7 建災防技発第 562 号 令和 7 年 10 月 30 日

建設業労働災害防止協会 都道府県支部事務局長 殿

建設業労働災害防止協会 専務理事 (公印省略)

労働安全衛生規則の規定に基づく告示等の周知について

標記について、今般、厚生労働省労働基準局安全衛生部化学物質対策課から、「労働安全衛生規則第五百七十七条の二第二項の規定に基づき厚生労働大臣が定める物及び厚生労働大臣が定める濃度の基準の一部を改正する件」の告示及び技術上の指針が令和7年10月8日付けで告示等されたので別添関係法令・関係通達等を周知するよう依頼がありました。

今般の告示は、濃度基準値を定める物質が令和8年10月1日に、78物質追加されること等の内容となっておりますが、貴支部会員事業場等に対して適宜周知くださりますようお願いいたします。

なお、標記に係る厚生労働省のホームページを下記のとおり当協会ホームページに も掲載いたしますので、御活用ください。

記

- 1. 当協会ホームページ掲載場所 安全管理・技術支援のご案内>関連法令等省庁公表資料 >厚生労働省 通達・告示(化学物質に関するもの)
- 公表された厚生労働省のホームページ 化学物質による労働災害防止のための新たな規制について https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/0000099121_00005.html

3. 添付資料

別添①告示(令和7年厚生労働省告示第269号) 別添②指針(改正令和7年10月8日技術上の指針公示第28号) 別添③通達(令和7年10月8日付け基発1008第1号)

労働安全衛生規則第五百七十七条の二第二項の規定に基づき厚生労働大臣が定める物及び厚生労働大臣が 定める濃度の基準の一部を改正する件

○厚生労働省告示第二百六十九号

労働安全衛生規則 (昭和四十七年労働省令第三十二号)第五百七十七条の二第二項の規定に基づき、 労働

安全衛生規則第五百七十七条の二第二項の規定に基づき厚生労働大臣が定める物及び厚生労働大臣が定める

濃度の基準 (令和五年厚生労働省告示第百七十七号) の一部を次の表のように改正し、令和八年十月一日か

ら適用する。

令和七年十月八日

厚生労働大臣 福岡 資麿

投 上	後		2
]表(第一号~第三号関係)			別表(第一号~第三号関係
物の種類	八時間濃度基 準値	短時間濃度基 準値	物の種類
(略)	(略)	(略)	(略)
アクリル酸エチル	(略)	(略)	アクリル酸エチル
アクリル酸 2 - エチルヘキシ ル	2 ppm	_	(新設)
アクリル酸ノルマルーブチル	(略)	(略)	アクリル酸ノルマルー
アクリル酸2-ヒドロキシプ	<u>0.5ppm</u>	=	(新設)
ロピル			
(略)	(略)	(略)	(略)
$3 - 7 \le J - 1 H - 1, 2,$	(略)	(略)	3-アミノ-1H-1
4-トリアゾール(別名アミ			4-トリアゾール (別
トロール)			トロール)
2-アミノ-2-メチル-1	<u>1 ppm</u>	_	(新設)
<u>ープロパノール</u>			
(略)	(略)	(略)	(略)
アルファーメチルスチレン	(略)	(略)	アルファーメチルスチ
イソオクタノール	<u>50ppm</u>		(新設)
(略)	(略)	(略)	(略)
イソプレン	(略)	(略)	イソプレン

 $2\,\mathrm{mg/m^3}$

4, 4'ーイソプロピリデン

\mathbb{H} 改

汇

[係)

物の種類	八時間濃度基	短時間濃度基
初少性短	準値	準値
(略)	(略)	(略)
アクリル酸エチル	(略)	(略)
(新設)	(新設)	(新設)
アクリル酸ノルマルーブチル	(略)	(略)
(新設)	(新設)	(新設)
(略)	(略)	(略)
$3 - 7 \le J - 1 H - 1, 2,$	(略)	(略)
4 - トリアゾール(別名アミ トロール)		
(新設)	(新設)	(新設)
(略)	(略)	(略)
アルファーメチルスチレン	(略)	(略)
(新設)	(新設)	(新設)
(略)	(略)	(略)
イソプレン	(略)	(略)
(新設)	(新設)	(新設)

ジョ) ュ (四カジョコ		
ジフェノール(別名ビスフェ		
<u>ノールA)</u>		
<u>N-イソプロピルアミノホス</u>	0.05mg/m ³	_
ホン酸〇-エチル-〇- (3		
<u>-メチル-4-メチルチオ</u>		
フェニル) (別名フェナミホ		
<u>ス)</u>		
(略)	(略)	(略)
イソプロピルエーテル	(略)	(略)
<u>N-イソプロピル-N'-</u>	10mg/m^3	_
フェニルーパラーフェニレン		
<u>ジアミン</u>		
(略)	(略)	(略)
エチルーパラーニトロフェニ	(略)	(略)
ルチオノベンゼンホスホネイ		
ト (別名EPN)		
O-エチル-S-フェニル=	0.1mg/m^3	_
エチルホスホノチオロチオ		
ナート (別名ホノホス)		
(略)	(略)	(略)
エチレンジアミン	(略)	(略)
1-エトキシー2-プロパ	60ppm	_
<u>ノール</u>		
3-エトキシプロパン酸エチ	<u>100ppm</u>	_

(新設)	(新設)	(新設)
(略)	(略)	(略)
イソプロピルエーテル	(略)	(略)
(新設)	(新設)	(新設)
(略)	(略)	(略)
エチルーパラーニトロフェニ	(略)	(略)
ルチオノベンゼンホスホネイ		
ト(別名EPN)		
(新設)	(新設)	(新設)
(略)	(略)	(略)
エチレンジアミン	(略)	(略)
(新設)	(新設)	(新設)
(新設)	(新設)	(新設)

<u>1</u> V		
エピクロロヒドリン	(略)	(略)
1, 2-エポキシー3-イソ	<u>1 ppm</u>	_
プロポキシプロパン		
(略)	(略)	(略)
塩化アリル	(略)	(略)
塩化シアン	_	0.3ppm
(略)	(略)	(略)
オルトーアニシジン	(略)	(略)
オルトーセカンダリーブチル	20mg/m^3	_
フェノール		
過酢酸	_	<u>0.5ppm</u>
(略)	(略)	(略)
カーボンブラック	(略)	(略)
<u>ぎ酸</u>	<u>5 ppm</u>	_
ぎ酸エチル	_	<u>100ppm</u>
(略)	(略)	(略)
クロロピクリン	(略)	(略)
<u>2-クロロー1</u> , 3-ブタジ	<u>1 ppm</u>	_
エン		
酢酸	(略)	(略)
酢酸1-エトキシ-2-プロ	<u>20ppm</u>	_
<u>ピル</u>		
(略)	(略)	(略)

エピクロロヒドリン	(略)	(略)
(新設)	(新設)	(新設)
(略)	(略)	(略)
塩化アリル	(略)	(略)
(新設)	(新設)	(新設)
(略)	(略)	(略)
オルトーアニシジン	(略)	(略)
(新設)	(新設)	(新設)
(新設)	(新設)	(新設)
(略)	(略)	(略)
カーボンブラック	(略)	(略)
(新設)	(新設)	(新設)
(新設)	(新設)	(新設)
(略)	(略)	(略)
クロロピクリン	(略)	(略)
(新設)	(新設)	(新設)
酢酸	(略)	(略)
(新設)	(新設)	(新設)
(略)	(略)	(略)

酢酸ブチル(酢酸ーセカンダ	(略)	(略)
<u>リーブチル及び</u> 酢酸ターシャ		
リーブチルに限る。)		
酢酸ベンジル	<u>10ppm</u>	_
酢酸1-メトキシ-2-プロ	<u>50ppm</u>	_
<u>ピル</u>		
(略)	(略)	(略)
2-シアノアクリル酸メチル	(略)	(略)
ジイソブチルケトン	<u>15ppm</u>	_
(略)	(略)	(略)
ジエチルーパラーニトロフェ	(略)	(略)
ニルチオホスフェイト(別名		
パラチオン)		
ジエチレングリコール	<u>10ppm</u>	_
(略)	(略)	(略)
シクロヘキシルアミン	(略)	(略)
シクロヘキセン	<u>20ppm</u>	_
(略)	(略)	(略)
ジクロロベンゼン (パラージ	(略)	(略)
クロロベンゼンに限る。)		
ジクロロベンゼン (メタージ	2 ppm	_
クロロベンゼンに限る。)		
ジシアン	<u>5 ppm</u>	_
(略)	(略)	(略)

酢酸ブチル(酢酸ターシャリ	(略)	(略)
ーブチルに限る。)		
(新設)	(新設)	(新設)
(新設)	(新設)	(新設)
(略)	(略)	(略)
2-シアノアクリル酸メチル	(略)	(略)
(新設)	(新設)	(新設)
(略)	(略)	(略)
ジエチルーパラーニトロフェ	(略)	(略)
ニルチオホスフェイト(別名		
パラチオン)		
(新設)	(新設)	(新設)
(略)	(略)	(略)
シクロヘキシルアミン	(略)	(略)
(新設)	(新設)	(新設)
(略)	(略)	(略)
ジクロロベンゼン (パラージ	(略)	(略)
クロロベンゼンに限る。)		
(新設)	(新設)	(新設)
(新設)	(新設)	(新設)
(略)	(略)	(略)

2, 6-ジーターシャリーブ	(略)	(略)
チルー4ークレゾール		
ジチオりん酸〇-エチル-〇	0.1mg/m^3	_
<u>- (4-メチルチオフェニ</u>		
<u>ル)-S-ノルマループロピ</u>		
ル (別名スルプロホス)		
<u>ジチオりん酸O, O-ジエチ</u>	0.05mg/m ³	_
ルーS-エチルチオメチル		
(別名ホレート)		
<u>ジチオりん酸O, O-ジエチ</u>	0.01 mg/m 3	_
<u>ルーS-(ターシャリーブチ</u>		
ルチオメチル)(別名テルブ		
<u>ホス)</u>		
(略)	(略)	(略)
ジメチルアミン	(略)	(略)
ジメチルーパラーニトロフェ	0.02mg/m^3	_
ニルチオホスフェイト(別名		
メチルパラチオン)		
臭化水素	<u> </u>	<u>1 ppm</u>
(略)	(略)	(略)
セレン	(略)	(略)
4-ターシャリーブチルフェ	0.5mg/m^3	_
<u>ノール</u>		
(略)	(略)	(略)

2, 6-ジーターシャリーブ	(略)	(略)
チルー4ークレゾール		
(新設)	(新設)	(新設)
(新設)	(新設)	(新設)
(新設)	(新設)	(新設)
(略)	(略)	(略)
ジメチルアミン	(略)	(略)
(新設)	(新設)	(新設)
(新設)	(新設)	(新設)
(略)	(略)	(略)
セレン	(略)	(略)
(新設)	(新設)	(新設)
(略)	(略)	(略)

チオりん酸〇, 〇一ジエチル	(略)	(略)
-0- (2-イソプロピルー		
6-メチル-4-ピリミジニ		
ル) (別名ダイアジノン)		
チオりん酸O, O-ジエチル	0.05mg/m ³	_
<u>-O-(3,5,6-トリク</u>		
ロロー2ーピリジル) (別名		
クロルピリホス)		
<u>チオりん酸O</u> , O – ジメチル	$5\mathrm{mg/m^3}$	=
<u>-O-(2, 4, 5-トリク</u>		
ロロフェニル) (別名ロンネ		
<u>/\(\begin{align*} /\ell \\ /\</u>		
(略)	(略)	(略)
テトラクロロジフルオロエタ	(略)	(略)
ン (別名CFC-112)		
1, 2, 3, 4-テトラヒド	2 ppm	_
ロナフタレン		
(略)	(略)	(略)
2, 4, 5-トリクロロフェ	(略)	(略)
ノキシ酢酸		
トリクロロフルオロメタン	_	1000ppm
<u>(別名CFC-11)</u>		
1, 2, 4-トリクロロベン	0.5ppm	
<u>ゼン</u>		

チオりん酸〇, 〇-ジエチル	(略)	(略)
-0- (2-イソプロピルー		
6-メチル-4-ピリミジニ		
ル) (別名ダイアジノン)		
(新設)	(新設)	(新設)
(新設)	(新設)	(新設)
(略)	(略)	(略)
テトラクロロジフルオロエタ	(略)	(略)
ン (別名CFC-112)		
(新設)	(新設)	(新設)
(略)	(略)	(略)
2, 4, 5-トリクロロフェ	(略)	(略)
ノキシ酢酸		
(新設)	(新設)	(新設)
(新設)	(新設)	(新設)

<u>N-(トリクロロメチルチ</u>	$5\mathrm{mg/m^3}$	_
<u>オ) -1, 2, 3, 6-テト</u>		
ラヒドロフタルイミド(別名		
キャプタン)		
(略)	(略)	(略)
トリメチルベンゼン	(略)	(略)
トルイジン(パラートルイジ	$4\mathrm{mg/m^3}$	_
<u>ン及びメタートルイジンに限</u>		
<u>る。)</u>		
1-ナフチル-N-メチルカ	(略)	(略)
ルバメート(別名カルバリ		
ル)		
ニコチン	0.5mg/m^3	<u> </u>
(略)	(略)	(略)
ニッケル	(略)	(略)
ニトリロ三酢酸	$3\mathrm{mg/m^3}$	_
(略)	(略)	(略)
ニトロメタン	(略)	(略)
乳酸ノルマルーブチル	10mg/m^3	_
(略)	(略)	(略)
パラーニトロアニリン	(略)	(略)
パラーメトキシフェノール	10mg/m^3	_
ビス (2-クロロエチル)	0.5ppm	_
エーテル		

(新設)	(新設)	(新設)
(略)	(略)	(略)
トリメチルベンゼン	(略)	(略)
(新設)	(新設)	(新設)
1-ナフチル-N-メチルカ	(略)	(略)
ルバメート(別名カルバリ		
ル)		
(新設)	(新設)	(新設)
(略)	(略)	(略)
ニッケル	(略)	(略)
(新設)	(新設)	(新設)
(略)	(略)	(略)
ニトロメタン	(略)	(略)
(新設)	(新設)	(新設)
(略)	(略)	(略)
パラーニトロアニリン	(略)	(略)
(新設)	(新設)	(新設)
(新設)	(新設)	(新設)

ビス(ジチオりん酸)S, S	0.05mg/m ³	_
<u>' -メチレン-0, 0, 0</u>		
<mark>',O'-テトラエチル(別</mark>		
名エチオン)		
(略)	(略)	(略)
ピリジン	(略)	(略)
ピレトラム	$2\mathrm{mg/m^3}$	_
(略)	(略)	(略)
フェニレンジアミン(パラー	(略)	(略)
フェニレンジアミン及びメタ		
-フェニレンジアミンに限		
る。)		
2-フェノキシエタノール	1 mg/m^3	_
(略)	(略)	(略)
フタル酸ジーノルマルーブチ	(略)	(略)
ル		
フタル酸ジメチル	$5\mathrm{mg/m^3}$	_
フタル酸ノルマルーブチル=	20mg/m^3	
ベンジル		
フタル酸ビス (2-エチルへ	(略)	(略)
キシル) (別名DEHP)		
2,3-ブタンジオン(別名	<u>0.01ppm</u>	<u> </u>
ジアセチル)		
ブタン (ノルマルーブタンに	<u>500ppm</u>	<u> </u>

限る。)_		
ブチルベンゼン (ノルマルー	<u>10ppm</u>	_
ブチルベンゼンに限る。)		
第化スルフリル	1 ppm	_
弗素及びその水溶性無機化合	弗素として	_
物(弗化亜鉛及び弗化カリウ	2.5mg/m^3	
ムに限る。)		
(略)	(略)	(略)
フルフリルアルコール	(略)	(略)
プロパン	1000ppm	=
プロピオンアルデヒド	<u>20ppm</u>	_
プロピオン酸	(略)	(略)
プロピルアルコール (ノルマ	300ppm	_
ループロピルアルコールに限		
<u>る。)</u>		
プロピレングリコールモノメ	(略)	(略)
チルエーテル		
2-プロピン-1-オール	<u>1 ppm</u>	_
2-ブロモー2-クロロー	<u>0.1ppm</u>	_
1, 1, 1-トリフルオロエ		
タン (別名ハロタン)		
ブロモクロロメタン	100ppm	_
(略)	(略)	(略)
1, 2, 3, 4, 10, 10-~	(略)	(略)

(新設)	(新設)	(新設)
(新設)	(新設)	(新設)
(新設)	(新設)	(新設)
(略)	(略)	(略)
フルフリルアルコール	(略)	(略)
(新設)	(新設)	(新設)
(新設)	(新設)	(新設)
プロピオン酸	(略)	(略)
(新設)	(新設)	(新設)
プロピレングリコールモノメ チルエーテル	(略)	(略)
(新設)	(新設)	(新設)
(新設)	(新設)	(新設)
(新設)	(新設)	(新設)
(略)	(略)	(略)
1, 2, 3, 4, 10, 10-~	(略)	(略)

キサクロロー6, 7ーエポキ		
>-1, 4, 4a, 5, 6,		
7, 8, 8 a ーオクタヒドロ		
ーエンドー1, 4ーエンドー		
5,8-ジメタノナフタレン		
(別名エンドリン)		
ヘキサクロロシクロペンタジ	0.005ppm	_
エン		
ヘキサクロロヘキサヒドロメ	0.1mg/m^3	_
<u>タノベンゾジオキサチエピン</u>		
オキサイド(別名ベンゾエピ		
<u></u>		
ヘキサヒドロー1, 3, 5-	0.5mg/m^3	_
トリニトロー1, 3, 5ート		
リアジン (別名シクロナイ		
<u>F)</u>		
ヘキサメチレン=ジイソシア	(略)	(略)
ネート		
ヘキサン (2-メチルペンタ	200ppm	_
<u>ンに限る。)</u>		
(略)	(略)	(略)
1, 2, 4-ベンゼントリカ	(略)	(略)
ルボン酸1,2-無水物		
ペンタクロロエタン	2 ppm	_
	<u> </u>	

キサクロロー6, 7ーエポキ		
シ−1, 4, 4 a, 5, 6,		
7, 8, 8 a -オクタヒドロ		
-エンド-1, 4-エンド-		
5,8-ジメタノナフタレン		
(別名エンドリン)		
(新設)	(新設)	(新設)
(新設)	(新設)	(新設)
(新設)	(新設)	(新設)
ヘキサメチレン=ジイソシア ネート	(略)	(略)
(新設)	(新設)	(新設)
(略)	(略)	(略)
1, 2, 4-ベンゼントリカ	(略)	(略)
ルボン酸1,2-無水物		
(新設)	(新設)	(新設)
(新設)	(新設)	(新設)

1ーペンタノール	<u>100ppm</u>	_
(略)	(略)	(略)
ほう酸及びそのナトリウム塩	(略)	(略)
(四ほう酸ナトリウム十水和		
物(別名ホウ砂)に限る。)		
ホルムアミド	<u>5 ppm</u>	
(略)	(略)	(略)
N-メチルカルバミン酸 2-	(略)	(略)
イソプロピルオキシフェニル		
(別名プロポキスル)		
<u>N</u> -メチルカルバミン酸2,	0.05mg/m ³	
3-ジヒドロ -2 , $2-$ ジメ		
チルー7ーベンゾ [b] フラ		
ニル(別名カルボフラン)		
メチルーターシャリーブチル	(略)	(略)
エーテル(別名MTBE)		
メチルナフタレン	0.3mg/m^3	_
<u>N-メチル-2-ピロリドン</u>	<u>1 ppm</u>	_
2-メチル-2-ブタノール	<u>10ppm</u>	_
2-メチルブタン-1-オー	<u>10ppm</u>	
<u>/\bull</u>		
(略)	(略)	(略)
2-メチルー2,4-ペンタ	(略)	(略)
ンジオール		

(新設)	(新設)	(新設)
(略)	(略)	(略)
ほう酸及びそのナトリウム塩	(略)	(略)
(四ほう酸ナトリウム十水和		
物(別名ホウ砂)に限る。)		
(新設)	(新設)	(新設)
(略)	(略)	(略)
N-メチルカルバミン酸2-	(略)	(略)
イソプロピルオキシフェニル		
(別名プロポキスル)		
(新設)	(新設)	(新設)
メチルーターシャリーブチル	(略)	(略)
エーテル(別名MTBE)		
(新設)	(新設)	(新設)
(略)	(略)	(略)
2-メチル-2, 4-ペンタ	(略)	(略)
ンジオール		
L	1	I

<u>S</u> ーメチルーNー(メチルカ	0.05mg/m^3	_
ルバモイルオキシ) チオアセ		
チミデート (別名メソミル)		
4, 4'ーメチレンジアニリ	(略)	(略)
ン		
1, 1'-メチレンビス (イ	0.05mg/m ³	_
ソシアナトベンゼン) (メチ		
レンビス(4,1-フェニレ		
<u>ン) =ジイソシアネートに限</u>		
<u>る。)</u>		
(略)	(略)	(略)
1-(2-メトキシ-2-メ	(略)	(略)
チルエトキシ) -2-プロパ		
ノール		
$1 - \cancel{\lambda} + \cancel{+} \cancel{\flat} - 2 - (2 - \cancel{\lambda})$	1 ppm	<u>-</u>
トキシエトキシ) エタン		
モリブデン及びその化合物	モリブデンと	_
(三酸化モリブデン、モリブ	$LT 0.5 mg/m^3$	
デン酸アンモニウム、モリブ		
デン酸ナトリウム及びリンモ		
<u>リブデン酸に限る。)</u>		
(略)	(略)	(略)
りん酸	(略)	(略)
<u>りん酸ジメチル=(E)-1</u>	0.05mg/m ³	<u> </u>

(新設)	(新設)	(新設)
4, 4'ーメチレンジアニリ	(略)	(略)
ン		
(新設)	(新設)	(新設)
(mtex)	(mfr)	(m/r)
(略)	(略)	(略)
1-(2-メトキシ-2-メ	(略)	(略)
チルエトキシ) -2-プロパ		
ノール		
(新設)	(新設)	(新設)
(新設)	(新設)	(新設)
(略)	(略)	(略)
りん酸	(略)	(略)
(新設)	(新設)	(新設)

<u>- (N-メチルカルバモイ</u>		
ル) -1-プロペン-2-イ		
ル (別名モノクロトホス)		
(略)	(略)	(略)
六塩化ブタジエン	(略)	(略)
ロテノン	0.3mg/m^3	=
備考(略)		

(略)	(略)	(略)
六塩化ブタジエン	(略)	(略)
(新設)	(新設)	(新設)

備考 (略)

化学物質による健康障害防止のための濃度の基準の適用等に関する技術上の指針

令和5年4月27日技術上の指針公示第24号 改正 令和6年5月8日技術上の指針公示第26号 改正 令和7年9月19日技術上の指針公示第27号 改正 令和7年10月8日技術上の指針公示第28号※ ※別表の二重下線部については令和8年10月1日適用

労働安全衛生法(昭和47年法律第57号)第28条第1項の規定に基づき、化 学物質による健康障害防止のための濃度の基準の適用等に関する技術上の指針 を次のとおり公表する。

1 総則

1-1 趣旨

- (1) 国内で輸入、製造、使用されている化学物質は数万種類にのぼり、そ の中には、危険性や有害性が不明な物質が多く含まれる。さらに、化学 物質による休業4日以上の労働災害(がん等の遅発性疾病を除く。)のう ち、特別規則(有機溶剤中毒予防規則(昭和 47 年労働省令第 36 号)、鉛 中毒予防規則(昭和47年労働省令第37号)、四アルキル鉛中毒予防規則 (昭和47年労働省令第38号)及び特定化学物質障害予防規則(昭和47 年労働省令第39号)をいう。以下同じ。)の規制の対象となっていない 物質に起因するものが約8割を占めている。また、化学物質へのばく露 に起因する職業がんも発生している。これらを踏まえ、特別規則の規制 の対象となっていない物質への対策の強化を主眼とし、国によるばく露 の上限となる基準等の制定、危険性や有害性に関する情報の伝達の仕組 みの整備や拡充を前提として、事業者が危険性や有害性に関する情報を 踏まえたリスクアセスメント(労働安全衛生法(昭和47年法律第57号。 以下「法」という。) 第 57 条の3第1項の規定による危険性又は有害性 の調査(主として一般消費者の生活の用に供される製品に係るものを除 く。)をいう。以下同じ。)を実施し、その結果に基づき、国の定める基 準等の範囲内で、ばく露防止のために講ずべき措置を適切に実施するた めの制度を導入することとしたところである。
- (2) 本指針は、化学物質等による危険性又は有害性等の調査等に関する指針 (平成 27 年 9 月 18 日付け危険性又は有害性等の調査等に関する指針 公示第 3 号。以下「化学物質リスクアセスメント指針」という。)と相まって、リスクアセスメント対象物(リスクアセスメントをしなければな

らない労働安全衛生法施行令(昭和47年政令第318号)第18条各号に 掲げる物及び法第57条の2第1項に規定する通知対象物をいう。以下同 じ。)を製造し、又は取り扱う事業者において、労働安全衛生規則(昭和47年労働省令第32号。以下「安衛則」という。)等の規定が円滑かつ適 切に実施されるよう、安衛則第577条の2第2項の規定に基づき厚生労 働大臣が定める濃度の基準(以下「濃度基準値」という。)及びその適用、 労働者のばく露の程度が濃度基準値以下であることを確認するための方 法、物質の濃度の測定における試料採取方法及び分析方法並びに有効な 保護具の適切な選択及び使用等について、法令で規定された事項のほか、 事業者が実施すべき事項を一体的に規定したものである。

なお、リスクアセスメント対象物以外の化学物質を製造し、又は取り扱う事業者においては、本指針を活用し、労働者が当該化学物質にばく露される程度を最小限度とするように努めなければならない。

1-2 実施内容

事業者は、次に掲げる事項を実施するものとする。

- (1) 事業場で使用する全てのリスクアセスメント対象物について、危険性 又は有害性を特定し、労働者が当該物にばく露される程度を把握した上 で、リスクを見積もること。
- (2) 濃度基準値が設定されている物質について、リスクの見積りの過程において、労働者が当該物質にばく露される程度が濃度基準値を超えるおそれがある屋内作業を把握した場合は、ばく露される程度が濃度基準値以下であることを確認するための労働者の呼吸域における物質の濃度の測定(以下「確認測定」という。)を実施すること。
- (3) (1) 及び(2) の結果に基づき、危険性又は有害性の低い物質への代替、工学的対策、管理的対策、有効な保護具の使用という優先順位に従い、労働者がリスクアセスメント対象物にばく露される程度を最小限度とすることを含め、必要なリスク低減措置(リスクアセスメントの結果に基づいて労働者の危険又は健康障害を防止するための措置をいう。以下同じ。)を実施すること。その際、濃度基準値が設定されている物質については、労働者が当該物質にばく露される程度を濃度基準値以下としなければならないこと。
- 2 リスクアセスメント及びその結果に基づく労働者のばく露の程度を濃度基準値以下とする措置等を含めたリスク低減措置
 - 2-1 基本的考え方
 - (1) 事業者は、事業場で使用する全てのリスクアセスメント対象物につい

- て、危険性又は有害性を特定し、労働者が当該物にばく露される程度を 数理モデルの活用を含めた適切な方法により把握した上で、リスクを見 積もり、その結果に基づき、危険性又は有害性の低い物質への代替、工 学的対策、管理的対策、有効な保護具の使用等により、当該物にばく露 される程度を最小限度とすることを含め、必要なリスク低減措置を実施 すること。
- (2) 事業者は、濃度基準値が設定されている物質について、リスクの見積もりの過程において、労働者が当該物質にばく露される程度が濃度基準値を超えるおそれのある屋内作業を把握した場合は、確認測定を実施し、その結果に基づき、当該作業に従事する全ての労働者が当該物質にばく露される程度を濃度基準値以下とすることを含め、必要なリスク低減措置を実施すること。この場合において、ばく露される当該物質の濃度の平均値の上側信頼限界(95%)(濃度の確率的な分布のうち、高濃度側から5%に相当する濃度の推計値をいう。以下同じ。)が濃度基準値以下であることを維持することまで求める趣旨ではないこと。
- (3) 事業者は、濃度基準値が設定されていない物質について、リスクの見積りの結果、一定以上のリスクがある場合等、労働者のばく露状況を正確に評価する必要がある場合には、当該物質の濃度の測定を実施すること。この測定は、作業場全体のばく露状況を評価し、必要なリスク低減措置を検討するために行うものであることから、工学的対策を実施しうる場合にあっては、労働者の呼吸域における物質の濃度の測定のみならず、よくデザインされた場の測定も必要になる場合があること。また、事業者は、統計的な根拠を持って事業場における化学物質へのばく露が適切に管理されていることを示すため、測定値のばらつきに対して、統計上の上側信頼限界(95%)を踏まえた評価を行うことが望ましいこと。
- (4) 事業者は、建設作業等、毎回異なる環境で作業を行う場合については、 典型的な作業を洗い出し、あらかじめ当該作業において労働者がばく露 される物質の濃度を測定し、その測定結果に基づく局所排気装置の設置 及び使用、要求防護係数に対して十分な余裕を持った指定防護係数を有 する有効な呼吸用保護具の使用(防毒マスクの場合は適切な吸収缶の使 用)等を行うことを定めたマニュアル等を作成することで、作業ごとに 労働者がばく露される物質の濃度を測定することなく当該作業における リスクアセスメントを実施することができること。また、当該マニュア ル等に定められた措置を適切に実施することで、当該作業において、労 働者のばく露の程度を最小限度とすることを含めたリスク低減措置を実 施することができること。
- (5) 事業者は、(1)から(4)までに定めるリスクアセスメント及びその結果

- に基づくリスク低減措置については、化学物質管理者(安衛則第 12 条の 5 第 1 項に規定する化学物質管理者をいう。以下同じ。)の管理下において実施する必要があること。
- (6) 事業者は、リスクアセスメントと濃度基準値については、次に掲げる 事項に留意すること。
 - ア リスクアセスメントの実施時期は、安衛則第 34 条の2の7第1項の規定により、①リスクアセスメント対象物を原材料等として新規に採用し、又は変更するとき、②リスクアセスメント対象物を製造し、又は取り扱う業務に係る作業の方法又は手順を新規に採用し、又は変更するとき、③リスクアセスメント対象物の危険性又は有害性等について変化が生じ、又は生ずるおそれがあるときとされていること。なお、「有害性等について変化が生じ」には、濃度基準値が新たに定められた場合や、すでに使用している物質が新たにリスクアセスメント対象物となった場合が含まれること。さらに、化学物質リスクアセスメント指針においては、前回のリスクアセスメントから一定の期間が経過し、設備等の経年劣化、労働者の入れ替わり等に伴う知識経験等の変化、新たな安全衛生に係る知見の集積等があった場合には、再度、リスクアセスメントを実施するよう努めることとしていること。
 - イ 労働者のばく露の程度が濃度基準値以下であることを確認する方法 は、事業者において決定されるものであり、確認測定の方法以外の方 法でも差し支えないが、事業者は、労働基準監督機関等に対して、労 働者のばく露の程度が濃度基準値以下であることを明らかにできる必 要があること。また、確認測定を行う場合は、確認測定の精度を担保 するため、作業環境測定士が関与することが望ましいこと。
 - ウ 「労働者の呼吸域」とは、当該労働者が使用する呼吸用保護具の外側であって、両耳を結んだ直線の中央を中心とした、半径 30 センチメートルの、顔の前方に広がった半球の内側をいうこと。
 - エ 労働者のばく露の程度は、呼吸用保護具を使用していない場合は、労働者の呼吸域において測定される濃度で、呼吸用保護具を使用している場合は、呼吸用保護具の内側の濃度で表されること。したがって、労働者の呼吸域における物質の濃度が濃度基準値を上回っていたとしても、有効な呼吸用保護具の使用により、労働者がばく露される物質の濃度を濃度基準値以下とすることが許容されることに留意すること。ただし、実際に呼吸用保護具の内側の濃度の測定を行うことは困難であるため、労働者の呼吸域における物質の濃度を呼吸用保護具の指定防護係数で除して、呼吸用保護具の内側の濃度を算定することができること。

オ よくデザインされた場の測定とは、主として工学的対策の実施のために、化学物質の発散源の特定、局所排気装置等の有効性の確認等のために、固定点で行う測定をいうこと。従来の作業環境測定のA・B測定の手法も含まれる。場の測定については、作業環境測定士の関与が望ましいこと。

2-2 リスクアセスメントにおける測定

2-2-1 基本的考え方

事業者は、リスクアセスメントの結果に基づくリスク低減措置として、 労働者のばく露の程度を濃度基準値以下とすることのみならず、危険性 又は有害性の低い物質への代替、工学的対策、管理的対策、有効な保護 具の使用等を駆使し、労働者のばく露の程度を最小限度とすることを含 めた措置を実施する必要があること。事業者は、工学的対策の設定及び 評価を実施する場合には、労働者の呼吸域における物質の濃度の測定の みならず、よくデザインされた場の測定を行うこと。

2-2-2 試料の採取場所及び評価

- (1) 事業場における全ての労働者のばく露の程度を最小限度とすることを含めたリスク低減措置の実施のために、ばく露状況の評価は、事業場のばく露状況を包括的に評価できるものであることが望ましいこと。このため、事業者は、労働者がばく露される濃度が最も高いと想定される均等ばく露作業(労働者がばく露する物質の量がほぼ均一であると見込まれる作業であって、屋内作業場におけるものに限る。以下同じ。)のみならず、幅広い作業を対象として、当該作業に従事する労働者の呼吸域における物質の濃度の測定を行い、その測定結果を統計的に分析し、統計上の上側信頼限界(95%)を活用した評価や物質の濃度が最も高い時間帯に行う測定の結果を活用した評価を行うことが望ましいこと。
- (2) 対象者の選定、実施時期、試料採取方法及び分析方法については、 3及び4に定める確認測定に関する事項に準じて行うことが望ましい こと。

3 確認測定の対象者の選定及び実施時期

3-1 確認測定の対象者の選定

(1) 事業者は、リスクアセスメントによる作業内容の調査、場の測定の結果及び数理モデルによる解析の結果等を踏まえ、均等ばく露作業に従事する労働者のばく露の程度を評価すること。その際、労働者の呼吸域に

おける物質の濃度が8時間のばく露に対する濃度基準値(以下「八時間 濃度基準値」という。)の2分の1程度を超えると評価された場合は、確 認測定を実施すること。

- (2) 全ての労働者のばく露の程度が濃度基準値以下であることを確認するという趣旨から、事業者は、労働者のばく露の程度が最も高いと想定される均等ばく露作業における最も高いばく露を受ける労働者(以下「最大ばく露労働者」という。)に対して確認測定を行うこと。その測定結果に基づき、事業場の全ての労働者に対して一律のリスク低減措置を行うのであれば、最大ばく露労働者が従事する作業よりもばく露の程度が低いことが想定される作業に従事する労働者について確認測定を行う必要はないこと。しかし、事業者が、ばく露の程度に応じてリスク低減措置の内容や呼吸用保護具の要求防護係数を作業ごとに最適化するために、当該作業ごとに最大ばく露労働者を選定し、確認測定を実施することが望ましいこと。
- (3) 均等ばく露作業ごとに確認測定を行う場合は、均等ばく露作業に従事する労働者の作業内容を把握した上で、当該作業における最大ばく露労働者を選定し、当該労働者の呼吸域における物質の濃度を測定することが妥当であること。
- (4) 均等ばく露作業の特定に当たっては、同一の均等ばく露作業において 複数の労働者の呼吸域における物質の濃度の測定を行った場合であって、 各労働者の濃度の測定値が測定を行った全労働者の濃度の測定値の平均 値の2分の1から2倍の間に収まらない場合は、均等ばく露作業を細分 化し、次回以降の確認測定を実施することが望ましいこと。
- (5) 労働者のばく露の程度を最小限度とし、労働者のばく露の程度を濃度 基準値以下とするために講ずる措置については、安衛則第 577 条の 2 第 10 項の規定により、事業者は、関係労働者の意見を聴取するとともに、 安衛則第 22 条第 11 号の規定により、衛生委員会において、それらの措 置について審議することが義務付けられていることに留意し、確認測定 の結果の共有も含めて、関係労働者との意思疎通を十分に行うとともに、 安全衛生委員会又は衛生委員会で十分な審議を行う必要があること。
- (6) 確認測定の対象者の選定等については、以下の事項に留意すること。
 - ア (1)において、リスク見積りの一環として、労働者が当該物質にばく 露される程度が濃度基準値を超えるおそれのある屋内作業の有無を判 断するために、確認測定を実施する基準として、労働者の呼吸域にお ける物質の濃度を採用する趣旨は、リスク低減措置はいずれも労働者 の呼吸域における物質の濃度に基づいて決定されるため、優先順位に 基づく必要なリスク低減措置を検討する際に労働者の呼吸域における

物質の濃度が必要であるためであること。さらに、労働者の呼吸域における物質の濃度が八時間濃度基準値の2分の1程度を超えると評価される場合を基準とする趣旨は、数理モデルや場の測定による労働者の呼吸域における物質の濃度の推定が、濃度が高くなると、ばらつきが大きくなり、推定の信頼性が低くなることを踏まえたものであること。

- イ (1) の労働者の呼吸域における物質の濃度が八時間濃度基準値の2 分の1程度を超えている労働者に対する確認測定は、測定中に、当該 労働者が濃度基準値以上の濃度にばく露されることのないよう、有効 な呼吸用保護具を着用させて測定を行うこと。
- ウ 均等ばく露作業ごとに確認測定を行う場合において、測定結果のばらつきや測定の失敗等を考慮し、八時間濃度基準値との比較を行うための確認測定については、均等ばく露作業ごとに最低限2人の測定対象者を選定することが望ましいこと。15分間のばく露に対する濃度基準値(以下「短時間濃度基準値」という。)との比較を行うための確認測定については、最大ばく露労働者のみを対象とすることで差し支えないこと。
- エ 均等ばく露作業において、最大ばく露労働者を特定できない場合は、 均等ばく露作業に従事する者の5分の1程度の労働者を抽出して確認 測定を実施する方法があること。

3-2 確認測定の実施時期

- (1) 事業者は、確認測定の結果、労働者の呼吸域における物質の濃度が、 濃度基準値を超えている作業場については、少なくとも6月に1回、確 認測定を実施すること。
- (2) 事業者は、確認測定の結果、労働者の呼吸域における物質の濃度が、 濃度基準値の2分の1程度を上回り、濃度基準値を超えない作業場については、一定の頻度で確認測定を実施することが望ましいこと。その頻度については、安衛則第34条の2の7及び化学物質リスクアセスメント 指針に規定されるリスクアセスメントの実施時期を踏まえつつ、リスクアセスメントの結果、定点の連続モニタリングの結果、工学的対策の信頼性、製造し又は取り扱う化学物質の毒性の程度等を勘案し、労働者の呼吸域における物質の濃度に応じた頻度となるように事業者が判断すべきであること。
- (3) 確認測定の実施時期等については、以下の事項に留意すること。
 - ア 確認測定は、最初の測定は呼吸用保護具の要求防護係数を算出する ため労働者の呼吸域における物質の濃度の測定が必要であるが、定期

的に行う測定はばく露状況に大きな変動がないことを確認する趣旨であるため、定点の連続モニタリングや場の測定で<u>確認測定に代えるこ</u>とも認められること。

イ 労働者の呼吸域における物質の濃度が濃度基準値以下の場合の確認 測定の頻度については、局所排気装置等を整備する等により作業環境 を安定的に管理し、定点の連続モニタリング等によって環境中の濃度 に大きな変動がないことを確認している場合は、作業の方法や局所排 気装置等の変更がない限り、確認測定を定期的に実施することは要し ないこと。

4 確認測定における試料採取方法及び分析方法

4-1 標準的な試料採取方法及び分析方法

確認測定における、事業者による標準的な試料採取方法及び分析方法は、 別表1に定めるところによること。なお、これらの方法と同等以上の精度 を有する方法がある場合は、それらの方法によることとして差し支えない こと。

4-2 試料空気の採取方法

4-2-1 確認測定における試料採取機器の装着方法

事業者は、確認測定における試料空気の採取については、作業に従事する労働者の身体に装着する試料採取機器を用いる方法により行うこと。この場合において、当該試料採取機器の採取口は、当該労働者の呼吸域における物質の濃度を測定するために最も適切な部位に装着しなければならないこと。

4-2-2 蒸気及びエアロゾル粒子が同時に存在する場合の試料採取機 器

事業者は、室温において、蒸気とエアロゾル粒子が同時に存在する物質については、濃度の測定に当たっては、濃度の過小評価を避けるため、原則として、飽和蒸気圧の濃度基準値に対する比(飽和蒸気圧/濃度基準値)が 0.1 以上 10 以下の物質については、蒸気とエアロゾル粒子の両方の試料を採取すること。

ただし、事業者は、作業実態において、蒸気やエアロゾル粒子による ばく露が想定される物質については、当該比が 0.1 以上 10 以下でない場 合であっても、蒸気とエアロゾル粒子の両方の試料を採取することが望 ましいこと。

別表1において、当該物質については、蒸気とエアロゾル粒子の両方

を捕集すべきであることを明記するとともに、標準的な試料採取方法として、蒸気を捕集する方法とエアロゾル粒子を捕集する方法を併記し、蒸気とエアロゾル粒子の両方を捕集する方法(相補捕集法)が定められていること。

事業場の作業環境に応じ、当該物質の測定及び管理のために必要がある場合は、次に掲げる算式により、濃度基準値の単位を変換できること。

C(mg/m³) = 分子量(g)/モル体積(L)×C(mL/m³=ppm) ただし、室温は25℃、気圧は1気圧とすること。

4-3 試料空気の採取時間

4-3-1 八時間濃度基準値と比較するための試料空気の採取時間

- (1) 空気試料の採取時間については、八時間濃度基準値と比較するという趣旨を踏まえ、連続する8時間の測定を行い採取した1つの試料か、複数の測定を連続して行って採取した合計8時間分の試料とすることが望ましいこと。8時間未満の連続した試料や短時間ランダムサンプリングは望ましくないこと。
- (2) ただし、一労働日を通じて労働者がばく露する物質の濃度が比較的 均一であり、自動化かつ密閉化された作業という限定的な場面においては、事業者は、試料採取時間の短縮を行うことは可能であること。この場合において、測定されない時間の存在は、測定の信頼性に対する深刻な弱点となるため、事業者は、測定されていない時間帯のばく露状況が測定されている時間帯のばく露状況と均一であることを、過去の測定結果や作業工程の観察等によって明らかにするとともに、試料採取時間は、労働者のばく露の程度が高い時間帯を含めて、少なくとも2時間(8時間の25%)以上とし、測定されていない時間帯のばく露における濃度は、測定されている時間のばく露における濃度と同一であるとみなすこと。
- (3) 八時間濃度基準値と比較するための試料空気の採取時間については、以下の事項に留意すること。
 - ア 八時間濃度基準値と比較をするための労働者の呼吸域における物質の濃度の測定に当たっては、適切な能力を持った自社の労働者が 試料採取を行い、その試料の分析を分析機関に委託する方法がある こと。
 - イ この場合、作業内容や労働者をよく知る者が試料採取を行うことができるため、試料採取の適切な実施が担保できるとともに、試料 採取の外部委託の費用を低減することが可能となること。

- 4-3-2 短時間濃度基準値と比較するための試料空気の採取時間
- (1) 事業者は、労働者のばく露の程度が短時間濃度基準値以下であることを確認するための測定においては、最大ばく露労働者(1人)について、1日の労働時間のうち最もばく露の程度が高いと推定される 15 分間に当該測定を実施する必要があること。
- (2) 事業者は、測定結果のばらつきや測定の失敗等を考慮し、当該労働時間中に少なくとも3回程度測定を実施し、最も高い測定値で比較を行うことが望ましいこと。ただし、1日の労働時間中の化学物質にばく露される作業時間が15分程度以下である場合は、1回で差し支えないこと。
- 4-3-3 短時間作業の場合の八時間濃度基準値と比較するための試料 空気の採取時間

事業者は、短時間作業が断続的に行われる場合や、一労働日における 化学物質にばく露する作業を行う時間の合計が8時間未満の場合におけ る八時間濃度基準値と比較するための試料空気の採取時間は、労働者が ばく露する作業を行う時間のみとすることができる。

5 濃度基準値及びその適用

- 5-1 八時間濃度基準値及び短時間濃度基準値の適用
- (1) 事業者は、別表2の左欄に掲げる物(※2と付されているものを除く。 以下同じ。)を製造し、又は取り扱う業務(主として一般消費者の生活の 用に供される製品に係るものを除く。)を行う屋内作業場においては、当 該業務に従事する労働者がこれらの物にばく露される程度を濃度基準値 以下としなければならないこと。
- (2) 濃度基準値は、別表2の左欄に掲げる物の種類に応じ、同表の中欄及び右欄に掲げる値とすること。この場合において、次のア及びイに掲げる値は、それぞれア及びイに定める濃度の基準を超えてはならないこと。ア 1日の労働時間のうち8時間のばく露における別表2の左欄に掲げる物の濃度を各測定の測定時間により加重平均して得られる値(以下「八時間時間加重平均値」という。) 八時間濃度基準値
 - イ 1日の労働時間のうち別表2の左欄に掲げる物の濃度が最も高くなると思われる15分間のばく露における当該物の濃度を各測定の測定時間により加重平均して得られる値(以下「十五分間時間加重平均値」という。) 短時間濃度基準値

- 5-2 濃度基準値の適用に当たって実施に努めなければならない事項 事業者は、5-1の濃度基準値について、次に掲げる事項を行うよう努 めなければならないこと。
- (1) 別表2の左欄に掲げる物のうち、八時間濃度基準値及び短時間濃度基準値が定められているものについて、当該物のばく露における十五分間時間加重平均値が八時間濃度基準値を超え、かつ、短時間濃度基準値以下の場合にあっては、当該ばく露の回数が1日の労働時間中に4回を超えず、かつ、当該ばく露の間隔を1時間以上とすること。
- (2) 別表2の左欄に掲げる物のうち、八時間濃度基準値が定められており、かつ、短時間濃度基準値が定められていないものについて、当該物のばく露における十五分間時間加重平均値が八時間濃度基準値を超える場合にあっては、当該ばく露の十五分間時間加重平均値が八時間濃度基準値の3倍を超えないようにすること。
- (3) 別表2の左欄に掲げる物のうち、短時間濃度基準値が天井値として定められているものは、当該物のばく露における濃度が、いかなる短時間のばく露におけるものであるかを問わず、短時間濃度基準値を超えないようにすること。
- (4) 別表2の左欄に掲げる物のうち、有害性の種類及び当該有害性が影響を及ぼす臓器が同一であるものを2種類以上含有する混合物の八時間濃度基準値については、次の式により計算して得た値が1を超えないようにすること。

 $C = C_1 / L_1 + C_2 / L_2 + \cdots$

(この式において、C、 C_1 、 C_2 ……及び L_1 、 L_2 ……は、それぞれ次の値を表すものとする。

C 換算値

C₁、C₂…… 物の種類ごとの八時間時間加重平均値

L₁、L₂…… 物の種類ごとの八時間濃度基準値)

- (5) (4)の規定は、短時間濃度基準値について準用すること。
- 6 濃度基準値の趣旨等及び適用に当たっての留意事項 事業者は、濃度基準値の適用に当たり、次に掲げる事項に留意すること。
 - 6-1 濃度基準値の設定

6-1-1 基本的考え方

(1) 各物質の濃度基準値は、原則として、収集された信頼のおける文献で示された無毒性量等に対し、不確実係数等を考慮の上、決定されたものである。各物質の濃度基準値は、設定された時点での知見に基づき設定されたものであり、濃度基準値に影響を与える新たな知見が得

られた場合等においては、再度検討を行う必要があるものであること。

(2) 特別規則の適用のある物質については、特別規則による規制との二 重規制を避けるため、濃度基準値を設定していないこと。

6-1-2 発がん性物質への濃度基準値の設定

- (1) 濃度基準値の設定においては、ヒトに対する発がん性が明確な物質 (別表1の左欄に※5及び別表2の左欄に※2と付されているもの。) については、発がんが確率的影響であることから、長期的な健康影響 が発生しない安全な閾値である濃度基準値を設定することは困難であ ること。このため、当該物質には、濃度基準値の設定がなされていな いこと。
- (2) これらの物質について、事業者は、有害性の低い物質への代替、工学的対策、管理的対策、有効な保護具の使用等により、労働者がこれらの物質にばく露される程度を最小限度としなければならないこと。

6-2 濃度基準値の趣旨

6-2-1 八時間濃度基準値の趣旨

- (1) 八時間濃度基準値は、長期間ばく露することにより健康障害が生ずる ことが知られている物質について、当該障害を防止するため、八時間時間加重平均値が超えてはならない濃度基準値として設定されたものであり、この濃度以下のばく露においては、おおむね全ての労働者に健康障害を生じないと考えられているものであること。
- (2) 短時間作業が断続的に行われる場合や、一労働日における化学物質にばく露する作業を行う時間の合計が8時間未満の場合は、ばく露する作業を行う時間以外の時間(8時間からばく露作業時間を引いた時間。以下「非ばく露作業時間」という。)について、ばく露における物質の濃度をゼロとみなして、ばく露作業時間及び非ばく露作業時間における物質の濃度をそれぞれの測定時間で加重平均して八時間時間加重平均値を算出するか、非ばく露作業時間を含めて8時間の測定を行い、当該濃度を8時間で加重平均して八時間時間加重平均値を算出すること(参考1の計算例参照)。
- (3) この場合において、八時間時間加重平均値と八時間濃度基準値を単純に比較するだけでは、短時間作業の作業中に八時間濃度基準値をはるかに上回る高い濃度のばく露が許容されるおそれがあるため、事業者は、十五分間時間加重平均値を測定し、短時間濃度基準値の定めがある物は5-1(2)イに定める基準を満たさなければならないとともに、5-2(1)から(5)までに定める事項を行うように努めること。

6-2-2 短時間濃度基準値の趣旨

- (1) 短時間濃度基準値は、短時間でのばく露により急性健康障害が生ずることが知られている物質について、当該障害を防止するため、作業中のいかなるばく露においても、十五分間時間加重平均値が超えてはならない濃度基準値として設定されたものであること。さらに、十五分間時間加重平均値が八時間濃度基準値を超え、かつ、短時間濃度基準値以下の場合にあっては、複数の高い濃度のばく露による急性健康障害を防止する観点から、5-2(1)において、十五分間時間加重平均値が八時間濃度基準値を超える最大の回数を4回とし、最短の間隔を1時間とすることを努力義務としたこと。
- (2) 八時間濃度基準値が設定されているが、短時間濃度基準値が設定されていない物質についても、八時間濃度基準値が均等なばく露を想定して設定されていることを踏まえ、毒性学の見地から、短期間に高濃度のばく露を受けることは避けるべきであること。このため、5-2(2)において、たとえば、8時間中ばく露作業時間が1時間、非ばく露作業時間が7時間の場合に、1時間のばく露作業時間において八時間濃度基準値の8倍の濃度のばく露を許容するようなことがないよう、作業中のいかなるばく露においても、十五分間時間加重平均値が、八時間濃度基準値の3倍を超えないことを努力義務としたこと。

6-2-3 天井値の趣旨

- (1) 天井値については、眼への刺激性等、非常に短い時間で急性影響が 生ずることが疫学調査等により明らかな物質について規定されており、 いかなる短時間のばく露においても超えてはならない基準値であるこ と。事業者は、濃度の連続測定によってばく露が天井値を超えないよ うに管理することが望ましいが、現時点における連続測定手法の技術 的限界を踏まえ、その実施については努力義務とされていること。
- (2) 事業者は、連続測定が実施できない場合は、当該物質の十五分間時間加重平均値が短時間濃度基準値を超えないようにしなければならないこと。また、事業者は、天井値の趣旨を踏まえ、当該物質への労働者のばく露が天井値を超えないよう、十五分間時間加重平均値が余裕を持って天井値を下回るように管理する等の措置を講ずることが望ましいこと。

6-3 濃度基準値の適用に当たっての留意事項

6-3-1 混合物への濃度基準値の適用

- (1) 混合物に含まれる複数の化学物質が、同一の毒性作用機序によって 同一の標的臓器に作用する場合、それらの物質の相互作用によって、 相加効果や相乗効果によって毒性が増大するおそれがあること。しか し、複数の化学物質による相互作用は、個別の化学物質の組み合わせ に依存し、かつ、相互作用も様々であること。
- (2) これを踏まえ、混合物への濃度基準値の適用においては、混合物に含まれる複数の化学物質が、同一の毒性作用機序によって同一の標的臓器に作用することが明らかな場合には、それら物質による相互作用を考慮すべきであるため、5-2(4)に定める相加式を活用してばく露管理を行うことが努力義務とされていること。

6-3-2 一労働日の労働時間が8時間を超える場合の適用

- (1) 一労働日における化学物質にばく露する作業を行う時間の合計が8時間を超える作業がある場合には、作業時間が8時間を超えないように管理することが原則であること。
- (2) やむを得ず化学物質にばく露する作業が8時間を超える場合、八時間時間加重平均値は、当該作業のうち、最も濃度が高いと思われる時間を含めた8時間のばく露における濃度の測定により求めること。この場合において、事業者は、当該八時間時間加重平均値が八時間濃度基準値を下回るのみならず、化学物質にばく露する全ての作業時間におけるばく露量が、八時間濃度基準値で8時間ばく露したばく露量を超えないように管理する等、適切な管理を行うこと。また、八時間濃度基準値を当該時間用に換算した基準値(八時間濃度基準値×8時間/実作業時間)により、労働者のばく露を管理する方法や、毒性学に基づく代謝メカニズムを用いた数理モデルを用いたばく露管理の方法も提唱されていることから、ばく露作業の時間が8時間を超える場合の措置については、化学物質管理専門家等の専門家の意見を踏まえ、必要な管理を実施すること。

7 リスク低減措置

7-1 基本的考え方

事業者は、化学物質リスクアセスメント指針に規定されているように、 危険性又は有害性の低い物質への代替、工学的対策、管理的対策、有効な 保護具の使用という優先順位に従い、対策を検討し、労働者のばく露の程 度を濃度基準値以下とすることを含めたリスク低減措置を実施すること。 その際、保護具については、適切に選択され、使用されなければ効果を発 揮しないことを踏まえ、本質安全化、工学的対策等の信頼性と比較し、最 も低い優先順位が設定されていることに留意すること。

7-2 保護具の適切な使用

- (1) 事業者は、確認測定により、労働者の呼吸域における物質の濃度が、 保護具の使用を除くリスク低減措置を講じてもなお、当該物質の濃度基準値を超えること等、リスクが高いことを把握した場合、有効な呼吸用 保護具を選択し、労働者に適切に使用させること。その際、事業者は、 保護具のうち、呼吸用保護具を使用する場合においては、その選択及び 装着が適切に実施されなければ、所期の性能が発揮されないことに留意 し、7-3及び7-4に定める呼吸用保護具の選択及び適切な使用の確 認を行うこと。
- (2) 事業者は、皮膚若しくは眼に障害を与えるおそれ又は皮膚から吸収され、若しくは皮膚から侵入して、健康障害を生ずるおそれがあることが明らかな化学物質及びそれを含有する製剤を製造し、又は取り扱う業務に労働者を従事させるときは、不浸透性の保護衣、保護手袋、履物又は保護眼鏡等の適切な保護具を使用させなければならないこと。
- (3) 事業者は、保護具に関する措置については、保護具に関して必要な教育を受けた保護具着用管理責任者(安衛則第12条の6第1項に規定する保護具着用管理責任者をいう。)の管理下で行わせなければならないこと。

7-3 呼吸用保護具の適切な選択

事業者は、濃度基準値が設定されている物質について、次に掲げるところにより、適切な呼吸用保護具を選択し、労働者に使用させること。

- (1) 労働者に使用させる呼吸用保護具については、要求防護係数を上回る 指定防護係数を有するものでなければならないこと。
- (2) (1)の要求防護係数は、次の式により計算すること。

 $PF_r = C/C_0$

(この式において、PFr、C及びCoは、それぞれ次の値を表すものとする。

PF 要求防護係数

- C 化学物質の濃度の測定の結果得られた値
- C。化学物質の濃度基準値)
- (3) (2)の化学物質の濃度の測定の結果得られた値は、測定値のうち最大の値とすること。
- (4) 要求防護係数の決定及び適切な保護具の選択は、化学物質管理者の管理のもと、保護具着用管理責任者が確認測定を行った者と連携しつつ行うこと。
- (5) 複数の化学物質を同時に又は順番に製造し、又は取り扱う作業場にお

ける呼吸用保護具の要求防護係数については、それぞれの化学物質ごと に算出された要求防護係数のうち、最大のものを当該呼吸用保護具の要 求防護係数として取り扱うこと。

- (6) (1)の指定防護係数は、別表第3-1から第3-4までの左欄に掲げる呼吸用保護具の種類に応じ、それぞれ同表の右欄に掲げる値とすること。ただし、指定防護係数は、別表第3-5の左欄に掲げる呼吸用保護具を使用した作業における当該呼吸用保護具の外側及び内側の化学物質の濃度の測定又はそれと同等の測定の結果により得られた当該呼吸用保護具に係る防護係数が同表の右欄に掲げる指定防護係数を上回ることを当該呼吸用保護具の製造者が明らかにする書面が当該呼吸用保護具に添付されている場合は、同表の左欄に掲げる呼吸用保護具の種類に応じ、それぞれ同表の右欄に掲げる値とすることができること。
- (7) 防じん又は防毒の機能を有する呼吸用保護具の選択に当たっては、主に蒸気又はガスとしてばく露する化学物質(濃度基準値の単位が ppm であるもの)については、有効な防毒機能を有する呼吸用保護具を選択し、主に粒子としてばく露する化学物質(濃度基準値の単位が mg/m³であるもの)については、粉じんの種類(固体粒子又はミスト)に応じ、有効な防じん機能を有する呼吸用保護具を労働者に使用させること。ただし、4-2-2で定める蒸気及び粒子の両方によるばく露が想定される物質については、防じん及び防毒の両方の機能を有する呼吸用保護具を労働者に使用させること。
- (8) 防毒の機能を有する呼吸用保護具は化学物質の種類に応じて、十分な 除毒能力を有する吸収缶を備えた防毒マスク、防毒機能を有する電動フ ァン付き呼吸用保護具又は別表第3-4に規定する呼吸用保護具を労働 者に使用させなければならないこと。

7-4 呼吸用保護具の装着の確認

事業者は、次に掲げるところにより、呼吸用保護具の適切な装着を1年 に1回、定期に確認すること。

- (1) 呼吸用保護具(面体を有するものに限る。)を使用する労働者について、日本産業規格 T8150 (呼吸用保護具の選択、使用及び保守管理方法)に定める方法又はこれと同等の方法により当該労働者の顔面と当該呼吸用保護具の面体との密着の程度を示す係数(以下「フィットファクタ」という。)を求め、当該フィットファクタが要求フィットファクタを上回っていることを確認する方法とすること。
- (2) フィットファクタは、次の式により計算するものとする。

 $F F = C_{out} / C_{in}$

(この式においてFF、 C_{out} 及び C_{in} は、それぞれ次の値を表すものとする。

FF フィットファクタ

- C_{out} 呼吸用保護具の外側の測定対象物の濃度
- C_{in} 呼吸用保護具の内側の測定対象物の濃度)
- (3) (1)の要求フィットファクタは、呼吸用保護具の種類に応じ、次に掲げる値とする。

全面形面体を有する呼吸用保護具 500 半面形面体を有する呼吸用保護具 100

別表1 物の種類別の試料採取方法及び分析方法

物の種類	試料採取方法	分析方法
アクリル酸	固体捕集方法	高速液体クロマトグラフ分析 方法
アクリル酸エチル	固体捕集方法	ガスクロマトグラフ分析方法
アクリル酸2-エチルヘキシ	固体捕集方法※1	ガスクロマトグラフ分析方法
<u> </u>		
アクリル酸ノルマルーブチル	固体捕集方法*1	ガスクロマトグラフ分析方法
アクリル酸2-ヒドロキシプ	固体捕集方法*1	ガスクロマトグラフ分析方法
ロピル		
アクリル酸メチル	固体捕集方法	ガスクロマトグラフ分析方法
アクロレイン	固体捕集方法**1	高速液体クロマトグラフ分析 方法
アセチルサリチル酸(別名ア	ろ過捕集方法	高速液体クロマトグラフ分析
スピリン)		方法
アセトアルデヒド	固体捕集方法**1	高速液体クロマトグラフ分析 方法
アセトニトリル	固体捕集方法	ガスクロマトグラフ分析方法
アセトンシアノヒドリン	固体捕集方法	ガスクロマトグラフ分析方法
アニリン	ろ過捕集方法**2	ガスクロマトグラフ分析方法
2-アミノエタノール	ろ過捕集方法**2	高速液体クロマトグラフ分析 方法
$3 - 7 \le J - 1 H - 1, 2,$	液体捕集方法	高速液体クロマトグラフ分析
4-トリアゾール(別名アミ		方法
トロール)		
2-アミノー2-メチルー1	固体捕集方法**1	高速液体クロマトグラフ分析
<u>ープロパノール</u>		<u>方法</u>
アリルアルコール	固体捕集方法	ガスクロマトグラフ分析方法
1-アリルオキシ-2, 3- エポキシプロパン	固体捕集方法	ガスクロマトグラフ分析方法
アリルーノルマループロピル	固体捕集方法	ガスクロマトグラフ分析方法
ジスルフィド		
3- (アルファーアセトニル	ろ過捕集方法	高速液体クロマトグラフ分析
ベンジル) -4-ヒドロキシ		方法
クマリン(別名ワルファリ		
<i>y</i>)		
アルファーメチルスチレン	固体捕集方法	ガスクロマトグラフ分析方法
イソオクタノール	固体捕集方法 2、四 抹 焦 士 洪 ※ 2	ガスクロマトグラフ分析方法
3ーイソシアナトメチルー	ろ過捕集方法**2	高速液体クロマトグラフ分析
3,5,5ートリメチルシク		方法
ロヘキシル=イソシアネート イソシアン酸メチル	固体捕集方法 ^{※1}	高速液体クロマトグラフ分析
		方法
イソプレン	固体捕集方法	ガスクロマトグラフ分析方法

4,4'-イソプロピリデン	ろ過捕集方法	高速液体クロマトグラフ分析
ジフェノール(別名ビスフェ		<u>方法</u>
ノールA)_		
N-イソプロピルアミノホス	ろ過捕集方法及び固	ガスクロマトグラフ分析方法
ホン酸〇-エチル-〇- (3	体捕集方法	
-メチル-4-メチルチオフ		
エニル) (別名フェナミホス)		
<u>*3</u>		
イソプロピルアミン	固体捕集方法*1	高速液体クロマトグラフ分析
		方法
イソプロピルエーテル	固体捕集方法	ガスクロマトグラフ分析方法
N-	ろ過捕集方法	高速液体クロマトグラフ分析
エニルーパラーフェニレンジ		<u>方法</u>
アミン	F711.184-131	39
イソホロン	固体捕集方法	ガスクロマトグラフ分析方法
一酸化二窒素	直接捕集方法	ガスクロマトグラフ分析方法** <u>4</u>
イプシロンーカプロラクタム**	ろ過捕集方法及び固	ガスクロマトグラフ分析方法
<u>3</u>	体捕集方法	
エチリデンノルボルネン	固体捕集方法	ガスクロマトグラフ分析方法
エチルアミン	固体捕集方法※1	高速液体クロマトグラフ分析
		方法
エチルーセカンダリーペンチ	固体捕集方法	ガスクロマトグラフ分析方法
ルケトン		
エチルーパラーニトロフェニ	ろ過捕集方法及び固	ガスクロマトグラフ分析方法
ルチオノベンゼンホスホネイ	体捕集方法	
ト (別名EPN) ** <u>3</u>	7 17 15 45 1.11 7.20 77	
O-エチルーS-フェニル=	ろ過捕集方法及び固	ガスクロマトグラフ分析方法
エチルホスホノチオロチオナ	<u>体捕集方法</u>	
一下(別名ホノホム)	口丛长生十十	方は流化カロートガニコハに
2-エチルヘキサン酸	固体捕集方法	高速液体クロマトグラフ分析
エチレングリコール	 固体捕集方法	方法 ガスクロマトグラフ分析方法
エチレングリコールモノブチ	固体捕集方法	ガスクロマトグラフ分析方法
ルエーテルアセタート	四件1冊未り14	ベハテト、ドラファガが1の伝
エチレングリコールモノメチ	 固体捕集方法	ガスクロマトグラフ分析方法
ルエーテルアセテート	F-11 1111/C/2 14	
エチレンクロロヒドリン	固体捕集方法	ガスクロマトグラフ分析方法
エチレンジアミン	固体捕集方法*1	高速液体クロマトグラフ分析
		方法
1-エトキシー2-プロパノ	ろ過捕集方法及び固	ガスクロマトグラフ分析方法
<u>ール^{※3}</u>	体捕集方法	
3-エトキシプロパン酸エチ	固体捕集方法	ガスクロマトグラフ分析方法
<u>IV</u>		
エピクロロヒドリン	固体捕集方法	ガスクロマトグラフ分析方法

1, 2-エポキシー3-イソ	固体捕集方法	ガスクロマトグラフ分析方法
プロポキシプロパン		
2, 3-エポキシー1-プロ	固体捕集方法	ガスクロマトグラフ分析方法
パノール*5		
2, 3-エポキシプロピル=	固体捕集方法	ガスクロマトグラフ分析方法
フェニルエーテル	TT / 1. 1. 44 - 1. 11.	12 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
塩化アリル	固体捕集方法	ガスクロマトグラフ分析方法
<u>塩化シアン</u>	固体捕集方法**1	ガスクロマトグラフ分析方法
塩化ベンジル※5	固体捕集方法	ガスクロマトグラフ分析方法
塩化ホスホリル	液体捕集方法	イオンクロマトグラフ分析方 法
1, 2, 4, 5, 6, 7,	ろ過捕集方法及び固	ガスクロマトグラフ分析方法**
8,8-オクタクロロー2,	体捕集方法	<u>4</u>
3, 3a, 4, 7, 7a-\ship		
キサヒドロー4, 7ーメタノ		
-1H-インデン(別名クロ		
ルデン) <u>*3</u>		
オゾン	ろ過捕集方法**2	イオンクロマトグラフ分析方 法
オルトーアニシジン	固体捕集方法	高速液体クロマトグラフ分析 方法
オルトーセカンダリーブチル	固体捕集方法	ガスクロマトグラフ分析方法
フェノール		
	液体捕集方法**1	ガスクロマトグラフ分析方法
過酢酸	似件佣朱刀伝	
過酸化水素	ろ過捕集方法**2	吸光光度分析方法
過酸化水素	ろ過捕集方法**2	吸光光度分析方法
過酸化水素	ろ過捕集方法** ² 分粒装置**6を用いる	吸光光度分析方法 重量分析方法
過酸化水素 カーボンブラック	ろ過捕集方法 ^{**2} 分粒装置 ^{**6} を用いる ろ過捕集方法	吸光光度分析方法
過酸化水素 カーボンブラック	ろ過捕集方法* ² 分粒装置 ^{*6} を用いる ろ過捕集方法 ろ過捕集方法及び固	吸光光度分析方法 重量分析方法 イオンクロマトグラフ分析方
過酸化水素 カーボンブラック <u>ぎ酸^{**3}</u>	ろ過捕集方法** ² 分粒装置* ⁶ を用いる ろ過捕集方法 <u>ろ過捕集方法及び固</u> <u>体捕集方法</u>	吸光光度分析方法重量分析方法イオンクロマトグラフ分析方法 <u>法</u>
過酸化水素 カーボンブラック <u>ぎ酸^{**3}</u> <u>ぎ酸エチル</u>	ろ過捕集方法** ² 分粒装置** ⁶ を用いる ろ過捕集方法 <u>ろ過捕集方法及び固体捕集方法</u> <u>固体捕集方法</u>	吸光光度分析方法重量分析方法イオンクロマトグラフ分析方法 <u>ガスクロマトグラフ分析方法</u>
過酸化水素 カーボンブラック <u>ぎ酸*3</u> <u>ぎ酸エチル</u> ぎ酸メチル	ろ過捕集方法** ² 分粒装置** ⁶ を用いる ろ過捕集方法 <u>ろ過捕集方法及び固</u> <u>体捕集方法</u> <u>固体捕集方法</u> 固体捕集方法	吸光光度分析方法重量分析方法イオンクロマトグラフ分析方法法ガスクロマトグラフ分析方法ガスクロマトグラフ分析方法
過酸化水素 カーボンブラック <u>ぎ酸**3</u> <u>ぎ酸エチル</u> ぎ酸メチル キシリジン	ろ過捕集方法** ² 分粒装置* ⁶ を用いる ろ過捕集方法 <u>ろ過捕集方法及び固体捕集方法</u> <u>固体捕集方法</u> 固体捕集方法 ろ過捕集方法	吸光光度分析方法重量分析方法イオンクロマトグラフ分析方法法ガスクロマトグラフ分析方法ガスクロマトグラフ分析方法ガスクロマトグラフ分析方法
過酸化水素 カーボンブラック <u>ぎ酸^{*3}</u> <u>ぎ酸エチル</u> ぎ酸メチル キシリジン クメン	ろ過捕集方法** ² 分粒装置** ⁶ を用いる ろ過捕集方法 ろ過捕集方法及び固 体捕集方法 固体捕集方法 固体捕集方法 る過捕集方法* ² 固体捕集方法	吸光光度分析方法 重量分析方法 イオンクロマトグラフ分析方法 法 ガスクロマトグラフ分析方法 ガスクロマトグラフ分析方法 ガスクロマトグラフ分析方法 ガスクロマトグラフ分析方法 高速液体クロマトグラフ分析方法 原子吸光分析方法又は誘導結
過酸化水素 カーボンブラック <u>ぎ酸**3</u> <u>ぎ酸エチル</u> ぎ酸メチル キシリジン クメン グルタルアルデヒド	ろ過捕集方法** ² 分粒装置** ⁶ を用いる ろ過捕集方法 ろ過捕集方法及び固 体捕集方法 固体捕集方法 固体捕集方法 る過捕集方法** ² 固体捕集方法 固体捕集方法** ¹	吸光光度分析方法重量分析方法イオンクロマトグラフ分析方法法ガスクロマトグラフ分析方法ガスクロマトグラフ分析方法ガスクロマトグラフ分析方法ガスクロマトグラフ分析方法高速液体クロマトグラフ分析方法方法
過酸化水素 カーボンブラック <u>ぎ酸**3</u> <u>ぎ酸エチル</u> ぎ酸メチル キシリジン クメン グルタルアルデヒド クロム クロロエタン (別名塩化エチ	ろ過捕集方法*2 分粒装置*6を用いる ろ過捕集方法 ろ過捕集方法及び固 体捕集方法 固体捕集方法 固体捕集方法 固体捕集方法 る過捕集方法*2 固体捕集方法 る過捕集方法*3 あば捕集方法*3	吸光光度分析方法 重量分析方法 <u>イオンクロマトグラフ分析方法</u> <u>オスクロマトグラフ分析方法</u> ガスクロマトグラフ分析方法 ガスクロマトグラフ分析方法 ガスクロマトグラフ分析方法 ガスクロマトグラフ分析方法 高速液体クロマトグラフ分析 方法 原子吸光分析方法又は誘導結 合プラズマ発光分光分析方法
過酸化水素 カーボンブラック <u>ぎ酸*3</u> <u>ぎ酸エチル</u> ぎ酸メチル キシリジン クメン グルタルアルデヒド クロム クロロエタン (別名塩化エチル)	ろ過捕集方法** ² 分粒装置** ⁶ を用いる ろ過捕集方法 ろ過捕集方法及び固 体捕集方法 固体捕集方法 固体捕集方法 る過捕集方法** ² 固体捕集方法 る過捕集方法** ³ 固体捕集方法 固体捕集方法 固体捕集方法 固体捕集方法 あ過捕集方法 あ過捕集方法 あ過捕集方法 ある過捕集方法	 吸光光度分析方法 重量分析方法 イオンクロマトグラフ分析方法 ガスクロマトグラフ分析方法 ガスクロマトグラフ分析方法 ガスクロマトグラフ分析方法 ガスクロマトグラフ分析方法 高速液体クロマトグラフ分析方法 原子吸光分析方法又は誘導結合プラズマ発光分光分析方法 ガスクロマトグラフ分析方法
過酸化水素 カーボンブラック <u>ぎ酸**3</u> <u>ぎ酸エチル</u> ぎ酸メチル キシリジン クメン グルタルアルデヒド クロム クロロエタン (別名塩化エチル) 2 ークロロー4 ーエチルアミ	ろ過捕集方法** ² 分粒装置** ⁶ を用いる ろ過捕集方法 ろ過捕集方法 <u>ろ過捕集方法</u> <u>固体捕集方法</u> 固体捕集方法 固体捕集方法 固体捕集方法 る過捕集方法* ² 固体捕集方法 固体捕集方法 る過捕集方法 る過捕集方法 る過捕集方法	吸光光度分析方法 重量分析方法 <u>イオンクロマトグラフ分析方法</u> <u>法</u> ガスクロマトグラフ分析方法 ガスクロマトグラフ分析方法 ガスクロマトグラフ分析方法 ガスクロマトグラフ分析方法 高速液体クロマトグラフ分析方法 原子吸光分析方法又は誘導結合プラズマ発光分光分析方法 ガスクロマトグラフ分析方法 ガスクロマトグラフ分析方法 ガスクロマトグラフ分析方法** ガスクロマトグラフ分析方法** ガスクロマトグラフ分析方法** ガスクロマトグラフ分析方法** ガスクロマトグラフ分析方法** ガスクロマトグラフ分析方法** ガスクロマトグラフ分析方法** オスクロマトグラフ分析方法** オスクロマトグラフク分析方法** オスクロマトグラフ分析方法** オスクロマトグラフ分析方法** オスクロマトグラフ分析方法** オスクロマトグラフク分析方法** オスクロマトグラフ分析方法** オスクロマトグラフク分析方法** オスクロマトグラフク分析方法** オスクロマトグラフク分別の対域が表別が表別の対域が表別の対域が表別の対域が表別の対域が表別の対域が表別の対域が表別の対域が表別の対域が表別の対域が表
過酸化水素 カーボンブラック <u>ぎ酸**3</u> <u>ぎ酸エチル</u> ぎ酸メチル キシリジン クメン グルタルアルデヒド クロム クロロエタン (別名塩化エチル) 2 ークロロー4ーエチルアミノー6ーイソプロピルアミノ	ろ過捕集方法** ² 分粒装置** ⁶ を用いる ろ過捕集方法 ろ過捕集方法 <u>ろ過捕集方法</u> <u>固体捕集方法</u> 固体捕集方法 固体捕集方法 固体捕集方法 る過捕集方法* ² 固体捕集方法 固体捕集方法 る過捕集方法 る過捕集方法 る過捕集方法	吸光光度分析方法 重量分析方法 <u>イオンクロマトグラフ分析方法</u> <u>法</u> ガスクロマトグラフ分析方法 ガスクロマトグラフ分析方法 ガスクロマトグラフ分析方法 ガスクロマトグラフ分析方法 おスクロマトグラフ分析方法 高速液体クロマトグラフ分析方法 原子吸光分析方法又は誘導結合プラズマ発光分光分析方法 ガスクロマトグラフ分析方法 ガスクロマトグラフ分析方法* ガスクロマトグラフ分析方法** ガスクロマトグラフ分析方法** ガスクロマトグラフ分析方法** ガスクロマトグラフ分析方法** ガスクロマトグラフ分析方法** ガスクロマトグラフ分析方法** ガスクロマトグラフ分析方法** ガスクロマトグラフ分析方法** *********************************
過酸化水素 カーボンブラック ぎ酸*3 ぎ酸エチル ぎ酸メチル キシリジン クメン グルタルアルデヒド クロム クロロエタン (別名塩化エチル) 2 ークロロー4ーエチルアミノー6ーイソプロピルアミノー1, 3, 5ートリアジン	ろ過捕集方法** ² 分粒装置** ⁶ を用いる ろ過捕集方法 ろ過捕集方法 <u>ろ過捕集方法</u> <u>固体捕集方法</u> 固体捕集方法 固体捕集方法 固体捕集方法 る過捕集方法* ² 固体捕集方法 固体捕集方法 る過捕集方法 る過捕集方法 る過捕集方法	吸光光度分析方法 重量分析方法 イオンクロマトグラフ分析方法 送 ガスクロマトグラフ分析方法 ガスクロマトグラフ分析方法 ガスクロマトグラフ分析方法 高速液体クロマトグラフ分析方法 原子吸光分析方法又は誘導結合プラズマ発光分光分析方法 ガスクロマトグラフ分析方法 ガスクロマトグラフ分析方法*

クロロジフルオロメタン(別	固体捕集方法	ガスクロマトグラフ分析方法
名HCFC-22)	口件件件十分*1	
2-/11-1, 1, 2-1	固体捕集方法*1	ガスクロマトグラフ分析方法
リフルオロエチルジフルオロ		
メチルエーテル(別名エンフ		
ルラン)	TT 44.44 # 4.44	
クロロピクリン	固体捕集方法	ガスクロマトグラフ分析方法
$\frac{2-\rho - 1}{2} = \frac{2-\rho - 1}{2}$	<u>固体捕集方法</u> 	ガスクロマトグラフ分析方法
酢酸	固体捕集方法	イオンクロマトグラフ分析方 法
酢酸1-エトキシ-2-プロピル	<u>固体捕集方法</u>	ガスクロマトグラフ分析方法
酢酸ビニル	固体捕集方法	ガスクロマトグラフ分析方法
酢酸ブチル(酢酸ーセカンダ	固体捕集方法	ガスクロマトグラフ分析方法
リーブチル及び酢酸ターシャ		
リーブチルに限る。)		
酢酸ベンジル	固体捕集方法**1	ガスクロマトグラフ分析方法
酢酸1-メトキシー2-プロ	固体捕集方法	ガスクロマトグラフ分析方法
ピル		
三塩化りん	液体捕集方法	吸光光度分析方法
酸化亜鉛	分粒装置 ^{*6} を用いる	エックス線回折分析方法
	ろ過捕集方法	
酸化カルシウム	ろ過捕集方法	原子吸光分光分析方法
酸化メシチル	固体捕集方法	ガスクロマトグラフ分析方法
ジアセトンアルコール	固体捕集方法	ガスクロマトグラフ分析方法
2-シアノアクリル酸メチル	固体捕集方法**1	高速液体クロマトグラフ分析 方法
ジイソブチルケトン	固体捕集方法	ガスクロマトグラフ分析方法
ジエタノールアミン	ろ過捕集方法**2	高速液体クロマトグラフ分析 方法
2-(ジエチルアミノ)エタ	固体捕集方法	ガスクロマトグラフ分析方法
ノール		
ジエチルアミン	固体捕集方法	高速液体クロマトグラフ分析 方法
ジエチルケトン	固体捕集方法	ガスクロマトグラフ分析方法
ジエチルーパラーニトロフェ	ろ過捕集方法及び固	ガスクロマトグラフ分析方法
ニルチオホスフェイト(別名	体捕集方法	
パラチオン)		
<u>ジエチレングリコール*3</u>	ろ過捕集方法及び固 体捕集方法	ガスクロマトグラフ分析方法
ジエチレングリコールモノブ	ろ過捕集方法及び固	ガスクロマトグラフ分析方法
チルエーテル ^{※3}	体捕集方法	
シクロヘキサン	固体捕集方法	ガスクロマトグラフ分析方法

シクロヘキシルアミン	ろ過捕集方法**2	イオンクロマトグラフ分析方
		法
シクロヘキセン	固体捕集方法	ガスクロマトグラフ分析方法
ジクロロエタン(1, 1-ジ	固体捕集方法	ガスクロマトグラフ分析方法
クロロエタンに限る。)		
ジクロロエチレン(1, 1-	固体捕集方法	ガスクロマトグラフ分析方法
ジクロロエチレンに限る。)		
ジクロロジフルオロメタン	固体捕集方法	ガスクロマトグラフ分析方法
(別名CFC-12)		
ジクロロテトラフルオロエタ	固体捕集方法	ガスクロマトグラフ分析方法
ン (別名CFC-114)	7 77 14 14 14 71 77 78 77	
2, 4-ジクロロフェノキシ	ろ過捕集方法及び固	高速液体クロマトグラフ分析
酢酸 ごクロロフルナロスクン (円)	体捕集方法	ガスター・レグニュハに土汁
ジクロロフルオロメタン(別 名HCFC-21)	固体捕集方法 	ガスクロマトグラフ分析方法
1, 3-ジクロロプロペン	 固体捕集方法	ガスクロマトグラフ分析方法
ジクロロベンゼン(パラージ	固体捕集方法	ガスクロマトグラフ分析方法
クロロベンゼン及びメタージ	四門用未りは	
クロロベンゼンに限る。)		
ジシアン	固体捕集方法*1	ガスクロマトグラフ分析方法
ジシクロペンタジエン	固体捕集方法	ガスクロマトグラフ分析方法
2,6-ジーターシャリーブ	ろ過捕集方法及び固	ガスクロマトグラフ分析方法
チルー4ークレゾール	体捕集方法	
ジチオりん酸〇-エチル-〇	ろ過捕集方法及び固	ガスクロマトグラフ分析方法
- (4-メチルチオフェニ	体捕集方法	
ル) - S - ノルマループロピ		
<u>ル(別名スルプロホス)**3</u>		
ジチオりん酸O, O-ジエチ	ろ過捕集方法及び固	ガスクロマトグラフ分析方法
ルーS-エチルチオメチル	体捕集方法	
(別名ホレート) **3		
ジチオりん酸O, O-ジエチ	ろ過捕集方法及び固	ガスクロマトグラフ分析方法
ルーS-(ターシャリーブチ	<u>体捕集方法</u>	
<u>ルチオメチル)(別名テルブホ</u> フ) *3		
<u>^)</u>	フ温は焦土汁五が口	ガフカローしがニコハ七十斗
ジチオりん酸O, O-ジメチ ル-S-「(4-オキソー	ろ過捕集方法及び固 体捕集方法	ガスクロマトグラフ分析方法
1, 2, 3-ベンゾトリアジ	沖1冊朱刀伝	
$\begin{bmatrix} 1, 2, 3-\sqrt{2}/\sqrt{3}/\sqrt{2} \\ 2-3(4H)-\sqrt{2}/\sqrt{2} \end{bmatrix}$		
ル] (別名アジンホスメチ		
/レ)		
ジフェニルアミン*3	ろ過捕集方法及び固	ガスクロマトグラフ分析方法
	体捕集方法	
ジフェニルエーテル	固体捕集方法	ガスクロマトグラフ分析方法
ジボラン	液体捕集方法	誘導結合プラズマ発光分光分
		析方法
	1	<u> </u>

N, N-ジメチルアセトアミド	固体捕集方法	ガスクロマトグラフ分析方法
N, N-ジメチルアニリン	□ ■ 固体捕集方法 ^{※1}	ガスクロマトグラフ分析方法
ジメチルアミン	固体捕集方法**1	高速液体クロマトグラフ分析 方法
ジメチルーパラーニトロフェ	ろ過捕集方法及び固	ガスクロマトグラフ分析方法
<u>ニルチオホスフェイト(別名</u> メチルパラチオン)*3	体捕集方法	
臭化水素	ろ過捕集方法*2	イオンクロマトグラフ分析方
	│ │ろ過捕集方法 ^{※2}	<u>法</u> イオンクロマトグラフ分析方
天光	ク旭佣来が伝	オスングロマドクラン分析の法
しよう脳	固体捕集方法	ガスクロマトグラフ分析方法
水酸化カルシウム	ろ過捕集方法	原子吸光分光分析方法
すず及びその化合物(ジブチ	ろ過捕集方法及び固	原子吸光分光分析方法
ルスズ=オキシドに限る。)	体捕集方法	19 1 1 1 1 1 1 1
すず及びその化合物(ジブチ	ろ過捕集方法及び固	ガスクロマトグラフ分析方法
ルスズ=ジクロリドに限 る。)	体捕集方法	
すず及びその化合物(ジブチ	 ろ過捕集方法	原子吸光分光分析方法
ルスズ=ジラウラート及びジ	ク週間来が仏	
ブチルスズ=マレアートに限		
3.)		
すず及びその化合物(ジブチ	ろ過捕集方法及び固	高速液体クロマトグラフ分析
ルスズビス(イソオクチル=	体捕集方法	方法及び原子吸光分光分析方
チオグリコレート)に限		法
る。)		
すず及びその化合物(テトラ	ろ過捕集方法及び固	高速液体クロマトグラフ分析
ブチルスズに限る。)	体捕集方法	方法及び原子吸光分光分析方
1-12777 01.0 H (1 11 -	フト日本とは「上小」	法
すず及びその化合物(トリフ	ろ過捕集方法	高速液体クロマトグラフ分析
エニルスズ=クロリドに限		方法及び誘導結合プラズマ発 光分光分析方法
る。) すず及びその化合物(トリブ	ろ過捕集方法及び固	一元分元分析方法 高速液体クロマトグラフ分析
99及いての化合物(トリノ チルスズ=クロリドに限	ク週拥果力伝及い回 体捕集方法	
うルスパーグログトに蹴 る。)	げかまたと	カ 伝 及 い 原 丁 吸 几 力 元 力 何 力 一 法
すず及びその化合物(トリブ	 ろ過捕集方法	原子吸光分析方法
チルスズ=フルオリドに限	> 1111 > 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	77. 4 70.7 G/4 VI/4 IM
る。)		
すず及びその化合物(ブチル	ろ過捕集方法及び固	ガスクロマトグラフ分析方法
トリクロロスズに限る。)	体捕集方法	
セレン	ろ過捕集方法	誘導結合プラズマ発光分光分 析方法
4-ターシャリーブチルフェ	固体捕集方法	高速液体クロマトグラフ分析
ノール	<u> </u>	方法
<u> </u>	1	<u> </u>

タリウム	ろ過捕集方法	誘導結合プラズマ質量分析方 法
チオりん酸〇,〇一ジエチル -〇一(2ーイソプロピルー 6ーメチルー4ーピリミジニ ル)(別名ダイアジノン)	ろ過捕集方法及び固 体捕集方法	液体クロマトグラフ質量分析 方法
チオりん酸O, Oージエチル -O-(3, 5, 6-トリク ロロー2ーピリジル)(別名ク ロルピリホス) **3	ろ過捕集方法及び固 体捕集方法	ガスクロマトグラフ分析方法
チオりん酸O, O-ジメチル -O-(2, 4, 5-トリク ロロフェニル)(別名ロンネ ル)*3	ろ過捕集方法及び固 体捕集方法 体捕集方法	<u>ガスクロマトグラフ分析方法*</u> 4
テトラエチルチウラムジスル フィド(別名ジスルフィラ ム)	ろ過捕集方法及び固 体捕集方法	高速液体クロマトグラフ分析 方法
テトラエチルピロホスフェイ ト (別名TEPP)	固体捕集方法	ガスクロマトグラフ分析方法
テトラクロロジフルオロエタ ン (別名CFC-112)	固体捕集方法	ガスクロマトグラフ分析方法
1, 2, 3, 4-テトラヒド ロナフタレン	固体捕集方法	<u>ガスクロマトグラフ分析方法**</u> 4
テトラメチルチウラムジスル フィド (別名チウラム)	ろ過捕集方法	高速液体クロマトグラフ分析 方法
トリエタノールアミン	ろ過捕集方法	ガスクロマトグラフ分析方法
トリクロロエタン(1, 1, 2ートリクロロエタンに限 る。)	固体捕集方法	ガスクロマトグラフ分析方法
トリクロロ酢酸	固体捕集方法	高速液体クロマトグラフ分析 方法
1, 1, 2-トリクロロー 1, 2, 2-トリフルオロエ タン	固体捕集方法	ガスクロマトグラフ分析方法
1, 1, 1ートリクロロー 2, 2ービス (4ーメトキシ フェニル) エタン (別名メト キシクロル)	ろ過捕集方法及び固 体捕集方法	ガスクロマトグラフ分析方法* 4
2, 4, 5ートリクロロフェ ノキシ酢酸	ろ過捕集方法	高速液体クロマトグラフ分析 方法
トリクロロフルオロメタン (別名CFC-11)	固体捕集方法	ガスクロマトグラフ分析方法
1, 2, 3-トリクロロプロ パン ^{※5}	固体捕集方法	ガスクロマトグラフ分析方法
1, 2, 4-トリクロロベン ゼン	固体捕集方法	<u>ガスクロマトグラフ分析方法**</u> <u>4</u>

N- (トリクロロメチルチ	ろ過捕集方法及び固	高速液体クロマトグラフ分析
<u>オ) -1, 2, 3, 6-テト</u>	体捕集方法	<u></u>
ラヒドロフタルイミド(別名		
キャプタン) ^{※3}		
トリニトロトルエン	固体捕集方法	ガスクロマトグラフ分析方法**
		4
トリブロモメタン	固体捕集方法	ガスクロマトグラフ分析方法
トリメチルアミン	固体捕集方法※1	ガスクロマトグラフ分析方法
トリメチルベンゼン	固体捕集方法	ガスクロマトグラフ分析方法
トルイジン(パラートルイジ	ろ過捕集方法※2	ガスクロマトグラフ分析方法**
ン及びメタートルイジンに限		4
<u>る。)</u>		
1-ナフチル-N-メチルカ	ろ過捕集方法及び固	高速液体クロマトグラフ分析
ルバメート(別名カルバリ	体捕集方法	方法
/レ) * <u>3</u>		
ニコチン	<u>固体捕集方法</u>	ガスクロマトグラフ分析方法
二酸化窒素	固体捕集方法*1	イオンクロマトグラフ分析方 法
ニッケル	ろ過捕集方法	誘導結合プラズマ発光分光分
		析方法
ニトリロ三酢酸	ろ過捕集方法	ガスクロマトグラフ分析方法**
		4
ニトロエタン	固体捕集方法	ガスクロマトグラフ分析方法
ニトログリセリン	固体捕集方法	ガスクロマトグラフ分析方法 [*] <u>4</u>
ニトロプロパン(1ーニトロ	固体捕集方法	ガスクロマトグラフ分析方法
プロパンに限る。)	国 <i></i> 提供士洪	ガフカローしがニコ八七十分
<u>ニトロプロパン (2ーニトロ</u> プロパンに限る。) *5	<u>固体捕集方法</u>	ガスクロマトグラフ分析方法
ニトロベンゼン	固体捕集方法	ガスクロマトグラフ分析方法
ニトロメタン	固体捕集方法	ガスクロマトグラフ分析方法
<u>乳酸ノルマルーブチル</u> ノナン(ノルマルーノナンに	固体捕集方法 固体捕集方法	ガスクロマトグラフ分析方法 ガスクロマトグラフ分析方法
限る。)	四件1冊未月伝	スペンロマドクランカ例の伝
ノルマルーブチルエチルケト	固体捕集方法	ガスクロマトグラフ分析方法
\(\frac{1}{2}\)	四件油未刈石	
ノルマルーブチルー2,3-	 固体捕集方法	ガスクロマトグラフ分析方法
エポキシプロピルエーテル ^{※5}	四1111111111111111111111111111111111111	
$N - [1 - (N - I)\nu \neg \nu]$	ろ過捕集方法及び固	高速液体クロマトグラフ分析
ブチルカルバモイル) -1 H	体捕集方法	方法
-2-ベンゾイミダゾリル]		
カルバミン酸メチル(別名べ		
ノミル)		
パラーアニシジン	固体捕集方法	高速液体クロマトグラフ分析
		方法
L	1	

ルエン パラーニトロアニリン ろ過捕集方法 高速液体クロマトグラフ分析方法 パラーメトキシフェノール 固体捕集方法 ガスクロマトグラフ分析方法 ビス (2ークロロエチル) エーテル 固体捕集方法 ガスクロマトグラフ分析方法 ビス (ジチオりん酸) S, S'ーメチレンーO, O, O', O'ーテトラエチル (別名エチオン) *3
パラーメトキシフェノール 固体捕集方法 ガスクロマトグラフ分析方法 ビス (2 - クロロエチル) エーテル 固体捕集方法 ガスクロマトグラフ分析方法 ビス (ジチオりん酸) S, S' -メチレン-O, O, O', O', -テトラエチル (別名エチオン) **3 ろ過捕集方法 ガスクロマトグラフ分析方法 砒素及びその化合物 (アルシンに限る。) **5 固体捕集方法 原子吸光分析方法 ヒドラジン及びその一水和物 ろ過捕集方法*2 高速液体クロマトグラフ分析方法 ヒドロキノン ろ過捕集方法 高速液体クロマトグラフ分析方法
ビス (2 - クロロエチル) エーテル固体捕集方法ガスクロマトグラフ分析方法ビス (ジチオりん酸) S, S' -メチレン-O, O, O', O' -テトラエチル (別名エチオン) **3ろ過捕集方法ガスクロマトグラフ分析方法砒素及びその化合物 (アルシンに限る。) **5固体捕集方法原子吸光分析方法ヒドラジン及びその一水和物ろ過捕集方法**2高速液体クロマトグラフ分析方法ヒドロキノンろ過捕集方法高速液体クロマトグラフ分析方法
ビス (ジチオりん酸) S, S'ーメチレン-O, O, O', O'ーテトラエチル (別名エチオン) **3 ろ過捕集方法 ガスクロマトグラフ分析方法 砒素及びその化合物 (アルシンに限る。) **5 固体捕集方法 原子吸光分析方法 ヒドラジン及びその一水和物 ろ過捕集方法**2 高速液体クロマトグラフ分析方法 ヒドロキノン ろ過捕集方法 高速液体クロマトグラフ分析方法 たがロキノン ろ過捕集方法 高速液体クロマトグラフ分析方法
ビス (ジチオりん酸) S, S' -メチレン-O, O, O', O' -テトラエチル (別 名エチオン) **3ろ過捕集方法 体捕集方法ガスクロマトグラフ分析方法砒素及びその化合物 (アルシンに限る。) **5固体捕集方法原子吸光分析方法ヒドラジン及びその一水和物ろ過捕集方法*2高速液体クロマトグラフ分析方法ヒドロキノンろ過捕集方法高速液体クロマトグラフ分析方法
S'-メチレン-O, O, O', O', O', -テトラエチル (別名エチオン) **3 体捕集方法 原子吸光分析方法 砒素及びその化合物 (アルシンに限る。) **5 固体捕集方法**2 原子吸光分析方法 ヒドラジン及びその一水和物 ろ過捕集方法**2 高速液体クロマトグラフ分析方法 ヒドロキノン ろ過捕集方法 高速液体クロマトグラフ分析方法 たドロキノン ろ過捕集方法 高速液体クロマトグラフ分析方法
O', O' ーテトラエチル (別名エチオン) **3調子吸光分析方法砒素及びその化合物 (アルシンに限る。) **5固体捕集方法原子吸光分析方法ヒドラジン及びその一水和物ろ過捕集方法**2高速液体クロマトグラフ分析方法ヒドロキノンろ過捕集方法高速液体クロマトグラフ分析方法
名エチオン) **3固体捕集方法原子吸光分析方法砒素及びその化合物(アルシンに限る。) **5固体捕集方法原子吸光分析方法ヒドラジン及びその一水和物ろ過捕集方法*2高速液体クロマトグラフ分析方法ヒドロキノンろ過捕集方法高速液体クロマトグラフ分析方法
金工
ンに限る。) **5 ヒドラジン及びその一水和物 ろ過捕集方法**2 トドロキノン ろ過捕集方法 高速液体クロマトグラフ分析方法
ヒドラジン及びその一水和物 ろ過捕集方法**2 高速液体クロマトグラフ分析 方法 ヒドロキノン ろ過捕集方法 高速液体クロマトグラフ分析 方法
たドロキノン ろ過捕集方法 高速液体クロマトグラフ分析 方法
方法
レールしルマン 田井士佐十分※1 ギュカュートゲニッハセーン
ビニルトルエン 固体捕集方法*1 ガスクロマトグラフ分析方法
N-ビニル-2-ピロリドン 固体捕集方法 ガスクロマトグラフ分析方法
ビフェニル 固体捕集方法 ガスクロマトグラフ分析方法
ピリジン 固体捕集方法 ガスクロマトグラフ分析方法
ピレトラム**3 ろ過捕集方法及び固 ガスクロマトグラフ分析方法*
<u>体捕集方法</u> <u>⁴</u>
フェニルオキシラン 固体捕集方法 ガスクロマトグラフ分析方法
フェニルヒドラジン**5液体捕集方法高速液体クロマトグラフ分析方法
フェニレンジアミン(オルト ろ過捕集方法**2 高速液体クロマトグラフ分析
ーフェニレンジアミンに限 方法
る。) **5
フェニレンジアミン (パラー ろ過捕集方法**2 高速液体クロマトグラフ分析
フェニレンジアミン及びメター 方法
ーフェニレンジアミンに限
る。)
2-フェノキシエタノール**3 ろ過捕集方法及び固 ガスクロマトグラフ分析方法*
<u>体捕集方法</u>
フェノブノシン つ週拥集方法 高速液体グロマトグラフ分析 方法
ブタノール(ターシャリーブ 固体捕集方法 ガスクロマトグラフ分析方法
タノールに限る。)
フタル酸ジエチル ^{※3}
フタル酸ジーノルマルーブチ ろ過捕集方法及び固 ガスクロマトグラフ分析方法
ル 体捕集方法
フタル酸ジメチル※3 ろ過捕隼方法及び固
本補集方法 ガスクロマトグラフ分析方法

フタル酸ノルマルーブチル=	ろ過捕集方法及び固	ガスクロマトグラフ分析方法**
ベンジル*3	体捕集方法	4
フタル酸ビス(2-エチルへ	ろ過捕集方法及び固	ガスクロマトグラフ分析方法
キシル)(別名DEHP)	体捕集方法	
2, 3-ブタンジオン(別名	固体捕集方法	ガスクロマトグラフ分析方法
ジアセチル)		
ブタン (ノルマルーブタンに限	<u></u> 固体捕集方法	ガスクロマトグラフ分析方法
<u>る。)</u>		
<u>ブチルベンゼン(ノルマルー</u> ブチルベンゼンに限る。)	固体捕集方法	ガスクロマトグラフ分析方法
第化スルフリル	固体捕集方法	<u>イオンクロマトグラフ分析方</u> 法
弗素及びその水溶性無機化合物(弗化亜鉛及び弗化カリウムに限る。)	ろ過捕集方法	<u>イオンクロマトグラフ分析方</u> <u>法</u>
2ーブテナール	固体捕集方法**1	高速液体クロマトグラフ分析 方法
フルフラール	固体捕集方法	高速液体クロマトグラフ分析 方法又はガスクロマトグラフ 分析方法**7
フルフリルアルコール	固体捕集方法	ガスクロマトグラフ分析方法
プロパン	固体捕集方法	ガスクロマトグラフ分析方法
プロピオンアルデヒド	固体捕集方法※1	高速液体クロマトグラフ分析 方法
プロピオン酸	固体捕集方法	ガスクロマトグラフ分析方法
プロピルアルコール(ノルマ	固体捕集方法	ガスクロマトグラフ分析方法
<u>ループロピルアルコールに限</u> る。)		
プロピレングリコールモノメ	固体捕集方法	ガスクロマトグラフ分析方法
チルエーテル 2-プロピン-1-オール	固体捕集方法 ^{※1}	ガスクロマトグラフ分析方法*
		4_
<u>ブロモエチレン**5</u>	固体捕集方法	ガスクロマトグラフ分析方法
2-ブロモー2-クロロー	<u>固体捕集方法</u>	ガスクロマトグラフ分析方法
<u>1,1,1-トリフルオロエ</u> タン(別名ハロタン)		
ブロモクロロメタン	 固体捕集方法	ガスクロマトグラフ分析方法
ブロモトリフルオロメタン	固体捕集方法	ガスクロマトグラフ分析方法
1-ブロモプロパン	固体捕集方法	ガスクロマトグラフ分析方法
2ーブロモプロパン※5	固体捕集方法	ガスクロマトグラフ分析方法
ヘキサクロロエタン	固体捕集方法	ガスクロマトグラフ分析方法
1, 2, 3, 4, 10, 10	ろ過捕集方法及び固	ガスクロマトグラフ分析方法**
- ヘキサクロロー 6 , 7 - エ	体捕集方法	4
ポキシー1, 4, 4 a, 5,	3182132 2 15 1	

6,7,8,8 a - オクタヒ		
ドローエンドー1, 4ーエン		
ドー5,8ージメタノナフタ		
レン(別名エンドリン)		
<u>ヘキサクロロシクロペンタジ</u>	<u>固体捕集方法</u>	ガスクロマトグラフ分析方法**
エン		_
ヘキサクロロヘキサヒドロメ	ろ過捕集方法及び固	ガスクロマトグラフ分析方法**
<u>タノベンゾジオキサチエピン</u>	体捕集方法	4
オキサイド(別名ベンゾエピ		
<u>ン)*3</u>		
<u>ヘキサヒドロー1, 3, 5-</u>	ろ過捕集方法	高速液体クロマトグラフ分析
トリニトロー1, 3, 5ート		<u>方法</u>
リアジン(別名シクロナイ		
<u>})</u>		
ヘキサメチレン=ジイソシア	ろ過捕集方法**2	高速液体クロマトグラフ分析
ネート		方法
ヘキサン (2-メチルペンタ	固体捕集方法	ガスクロマトグラフ分析方法
ンに限る。)		
ヘプタン(ノルマルーヘプタ	固体捕集方法	ガスクロマトグラフ分析方法
ンに限る。)		
1, 2, 4-ベンゼントリカ	ろ過捕集方法**2	高速液体クロマトグラフ分析
ルボン酸1,2-無水物		方法
ペンタクロロエタン	固体捕集方法	ガスクロマトグラフ分析方法**
		4
1ーペンタナール	固体捕集方法※1	ガスクロマトグラフ分析方法
1ーペンタノール	固体捕集方法	ガスクロマトグラフ分析方法
ペンタン(ノルマルーペンタ	固体捕集方法	ガスクロマトグラフ分析方法
ン及び2-メチルブタンに限		
る。)		
ほう酸及びそのナトリウム塩	ろ過捕集方法	誘導結合プラズマ発光分光分
(四ほう酸ナトリウム十水和		析方法
物(別名ホウ砂)に限る。)		
ホルムアミド	固体捕集方法	ガスクロマトグラフ分析方法
無水酢酸	ろ過捕集方法**2	ガスクロマトグラフ分析方法
無水マレイン酸	ろ過捕集方法**2	高速液体クロマトグラフ分析
, and the second		方法
メタクリル酸	固体捕集方法	高速液体クロマトグラフ分析
		方法
メタクリル酸2, 3-エポキ	固体捕集方法	ガスクロマトグラフ分析方法
シプロピル *5		
メタクリル酸メチル	固体捕集方法	ガスクロマトグラフ分析方法
メタクリロニトリル	固体捕集方法	ガスクロマトグラフ分析方法
メチラール	固体捕集方法	ガスクロマトグラフ分析方法
N-メチルアニリン	液体捕集方法	ガスクロマトグラフ分析方法
メチルアミン	固体捕集方法**1	高速液体クロマトグラフ分析
		方法
	1	1/14

N)チュムュッコン語の	フルお生土汁サスドロ	古法族化カーコードニッハセ
N-メチルカルバミン酸2-	ろ過捕集方法及び固	高速液体クロマトグラフ分析
イソプロピルオキシフェニル (別名プロポキスル) ** <u>3</u>	体捕集方法	方法
N-メチルカルバミン酸2,	ろ過捕集方法及び固	高速液体クロマトグラフ分析
$\frac{N}{3-\tilde{y}}$ ドロー2, $2-\tilde{y}$ メ	ク週間乗り伝及り回 体捕集方法	
	<u> </u>	<u>方法</u>
<u>チルー7ーベンゾ[b]フラ</u> ニル(別名カルボフラン) ^{※3}		
メチルーターシャリーブチル	固体捕集方法	ガスクロマトグラフ分析方法
エーテル (別名MTBE)		
メチルナフタレン	固体捕集方法	ガスクロマトグラフ分析方法**
		4
N-メチル-2-ピロリドン	固体捕集方法	ガスクロマトグラフ分析方法
2-メチル-2-ブタノール	固体捕集方法	ガスクロマトグラフ分析方法
2-メチルブタン-1-オー	固体捕集方法	ガスクロマトグラフ分析方法
<u>/\/</u>		
5-メチルー2-ヘキサノン	固体捕集方法	ガスクロマトグラフ分析方法
2-メチルー2, 4-ペンタ	固体捕集方法	ガスクロマトグラフ分析方法
ンジオール		
<u>S</u> ーメチルーNー (メチルカ	ろ過捕集方法及び固	高速液体クロマトグラフ分析
ルバモイルオキシ)チオアセ	体捕集方法	方法
チミデート (別名メソミル) **		
3		
4, 4'ーメチレンジアニリ	ろ過捕集方法**2	高速液体クロマトグラフ分析
		方法
<u>1, 1'ーメチレンビス(イ</u>	ろ過捕集方法※2	高速液体クロマトグラフ分析
ソシアナトベンゼン) (メチレ		<u> </u>
ンビス(4, 1-フェニレン)		
=ジイソシアネートに限る。)		
メチレンビス(4, 1-シク	ろ過捕集方法**2	高速液体クロマトグラフ分析
ロヘキシレン)=ジイソシア		方法
ネート		
1-(2-メトキシ-2-メ	固体捕集方法	ガスクロマトグラフ分析方法
チルエトキシ) -2-プロパ		
ノール		
1-メトキシー2-(2-メ	固体捕集方法	ガスクロマトグラフ分析方法
トキシエトキシ)エタン		Y Y Y VY VY VY VY
モリブデン及びその化合物	ろ過捕集方法	誘導結合プラズマ発光分析方
(三酸化モリブデン、モリブ		<u>法</u>
デン酸アンモニウム、モリブ		
デン酸ナトリウム及びリンモ		
リブデン酸に限る。)		
<u>/</u> //	固体捕集方法**1	イオンクロマトグラフ分析方
D N Z IN		法
りん化水素	固体捕集方法*1	吸光光度分析方法
りん酸	ろ過捕集方法	イオンクロマトグラフ分析方
		法
	1	ı

りん酸ジメチル= (E) -1	ろ過捕集方法及び固	ガスクロマトグラフ分析方法
- (N-メチルカルバモイ	体捕集方法	
ル) -1-プロペン-2-イ		
ル (別名モノクロトホス) **3		
りん酸ジメチル=1-メトキ	ろ過捕集方法及び固	ガスクロマトグラフ分析方法
シカルボニルー1ープロペン	体捕集方法	
-2-イル(別名メビンホ		
ス)		
りん酸トリトリル(りん酸ト	ろ過捕集方法	高速液体クロマトグラフ分析
リ(オルトートリル)に限		方法
る。)		
りん酸トリーノルマルーブチ	ろ過捕集方法及び固	ガスクロマトグラフ分析方法
ル <u>*3</u>	体捕集方法	
レソルシノール	ろ過捕集方法及び固	高速液体クロマトグラフ分析
	体捕集方法	方法
六塩化ブタジエン	固体捕集方法	ガスクロマトグラフ分析方法**
		4
ロテノン	ろ過捕集方法	高速液体クロマトグラフ分析
		<u>方法</u>

備考

- 1 ※1の付されている物質の試料採取方法については、捕集剤<u>又は捕集液</u>との化学反応 により測定しようとする物質を採取する方法であること。
- 2 ※2の付されている物質の試料採取方法については、ろ過材に含浸させた化学物質との反応により測定しようとする物質を採取する方法であること。
- 3 <u>※3が付されている物質については、蒸気と粒子の両方を捕集すべき物質であり、当</u> 該物質の試料採取方法におけるろ過捕集方法は粒子を捕集するための方法、固体捕集方 法は蒸気を捕集するための方法に該当するものであること。
- 4 <u>※4の付されている物質の分析方法に用いられる機器は、電子捕獲型検出器(ECD)</u> 又は質量分析器を有するガスクロマトグラフであること。
- 5 ※5の付されている物質については、発がん性が明確で、長期的な健康影響が生じない安全な閾値としての濃度基準値を設定できない物質。
- 6 ※6の付されている分粒装置は、作業環境測定基準(昭和51年労働省告示第46号) 第2条第2項に規定する分粒装置をいうこと。
- 7 ※7の付されている物質の試料採取方法については、分析方法がガスクロマトグラフ 分析方法の場合にあっては、捕集剤との化学反応により測定しようとする物質を採取す る方法であること。

別表 2 物の種類別濃度基準値一覧(発がん性が明確であるため、長期的な健康影響が生じない安全な閾値としての濃度基準値を設定できない物質を含む。)

世の任本	八時間	短時間
物の種類	濃度基準値	濃度基準値
アクリル酸	2 ppm	_
アクリル酸エチル	2 ppm	_
アクリル酸 2 - エチルヘキシル	2 ppm	<u>_</u>
アクリル酸ノルマルーブチル	2 ppm	_
アクリル酸2-ヒドロキシプロピル	<u>0.5 ppm</u>	_
アクリル酸メチル	2 ppm	_
アクロレイン	_	0.1 ppm [*] 1
アセチルサリチル酸 (別名アスピリン)	5 mg/m^3	_
アセトアルデヒド	_	10 ppm
アセトニトリル	10 ppm	_
アセトンシアノヒドリン	_	5 ppm
アニリン	2 ppm	_
2-アミノエタノール	20 mg/m^3	_
3-アミノー1H-1, 2, 4-トリアゾール	0.2 mg/m^3	_
(別名アミトロール)	0. 2 llig/ III	
2-アミノー2-メチルー1-プロパノール	<u>1 ppm</u>	<u>-</u>
アリルアルコール	0.5 ppm	_
1-アリルオキシ-2, 3-エポキシプロパ	1 ppm	_
ン		
アリルーノルマループロピルジスルフィド	_	1 ppm
3-(アルファーアセトニルベンジル)-4-	0.01 mg/m³	_
ヒドロキシクマリン(別名ワルファリン)	O. OI mg/ III	
アルファーメチルスチレン	10 ppm	_
<u>イソオクタノール</u>	<u>50 ppm</u>	<u>_</u>
3-イソシアナトメチル-3,5,5-トリメ	0.005 ppm	_
チルシクロヘキシル=イソシアネート	0.000 ppm	
イソシアン酸メチル	0.02 ppm	0.04 ppm
イソプレン	3 ppm	_
4,4'ーイソプロピリデンジフェノール(別	2 mg/m^3	=
<u>名ビスフェノールA)</u>		
N-イソプロピルアミノホスホン酸O-エチ	0.05 mg/m^3	=
<u>ルー〇一(3ーメチルー4ーメチルチオフェ</u>		
ニル) (別名フェナミホス)		

イソプロピルアミン	2 ppm	_
イソプロピルエーテル	250 ppm	500 ppm
<u>N-イソプロピル-N'-フェニルーパラー</u>	10 mg/m^3	_
フェニレンジアミン		
イソホロン	_	5 ppm
一酸化二窒素	100 ppm	_
イプシロンーカプロラクタム	5 mg/m³	_
エチリデンノルボルネン	2 ppm	4 ppm
エチルアミン	5 ppm	_
エチルーセカンダリーペンチルケトン	10 ppm	_
エチルーパラーニトロフェニルチオノベンゼ	0.1 mg/m³	
ンホスホネイト(別名EPN)	0.1 mg/m³	
<u>O-エチル-S-フェニル=エチルホスホノ</u>	0.1 mg/m^3	_
<u>チオロチオナート (別名ホノホス)</u>		
2-エチルヘキサン酸	5 mg/m³	_
エチレングリコール	10 ppm	50 ppm
エチレングリコールモノブチルエーテルアセ	20 ppm	_
タート	20 ppili	
エチレングリコールモノメチルエーテルアセ	1 ppm	_
テート	т ррш	
エチレンクロロヒドリン	2 ppm	_
エチレンジアミン	10 ppm	_
1-エトキシー2-プロパノール	<u>60 ppm</u>	_
3-エトキシプロパン酸エチル	<u>100 ppm</u>	_
エピクロロヒドリン	0.5 ppm	_
1, 2-エポキシー3-イソプロポキシプロ	<u>1 ppm</u>	<u> </u>
<u>パン</u>		
2, 3-エポキシー1-プロパノール*2	_	_
2, 3-エポキシプロピル=フェニルエーテ	0.1 ppm	_
<u>/\bullet</u>	<u> </u>	_
塩化アリル	1 ppm	_
塩化シアン	_	<u>0.3 ppm</u>
塩化ベンジル ^{※2}	_	_
塩化ホスホリル	0.6 mg/m^3	_
1, 2, 4, 5, 6, 7, 8, 8-オクタクロ		
ロ-2, 3, 3 a, 4, 7, 7 a - ヘキサヒド	0.5 mg/m^3	_
ロー4,7-メタノー1H-インデン(別名ク		

ロルデン)		
オゾン	_	0.1 ppm
オルトーアニシジン	0.1 ppm	_
オルトーセカンダリーブチルフェノール	20 mg/m^3	<u>_</u>
過酢酸	_	0.5 ppm
過酸化水素	0.5 ppm	_
カーボンブラック	レスピラブル粒子	
	として 0.3 mg/m³	
<u>ぎ酸</u>	<u>5 ppm</u>	<u>_</u>
ぎ酸エチル	<u> </u>	<u>100 ppm</u>
ぎ酸メチル	50 ppm	100 ppm
キシリジン	0.5 ppm	_
クメン	10 ppm	_
グルタルアルデヒド	_	0.03 ppm [*] 1
クロム	0.5 mg/m^3	_
クロロエタン (別名塩化エチル)	100 ppm	_
2-クロロー4-エチルアミノー6-イソプ		
ロピルアミノー1,3,5-トリアジン(別名	2 mg/m^3	_
アトラジン)		
クロロ酢酸	0.5 ppm	_
クロロジフルオロメタン(別名HCFC-2	1,000 ppm	_
2)	1,000 ppm	
2-クロロー1,1,2-トリフルオロエチル		
ジフルオロメチルエーテル(別名エンフルラ	20 ppm	_
ン)		
クロロピクリン	_	0.1 ppm [*] 1
<u>2-クロロー1, 3-ブタジエン</u>	<u>1 ppm</u>	_
酢酸	_	15 ppm
酢酸1-エトキシー2-プロピル	<u>20 ppm</u>	_
酢酸ビニル	10 ppm	15 ppm
酢酸ブチル(<u>酢酸-セカンダリーブチル及び</u>	20 ppm	150 ppm
酢酸ターシャリーブチルに限る。)	FF	· · · · · · · · · · · · · · · · · ·
酢酸ベンジル	<u>10 ppm</u>	_
酢酸1-メトキシ-2-プロピル	<u>50 ppm</u>	_
三塩化りん	0.2 ppm	0.5 ppm
酸化亜鉛	レスピラブル粒子	_
	として 0.1 mg/m³	

酸化カルシウム	0.2 mg/m³	_
酸化メシチル	2 ppm	_
ジアセトンアルコール	20 ppm	_
2-シアノアクリル酸メチル	0.2 ppm	1 ppm
ジイソブチルケトン	15 ppm	_
ジエタノールアミン	$\frac{1}{1}$ mg/m ³	_
2- (ジエチルアミノ) エタノール	2 ppm	_
ジエチルアミン	5 ppm	15 ppm
ジエチルケトン	_	300 ppm
ジエチルーパラーニトロフェニルチオホスフ	0.05 mg/m^3	_
ェイト(別名パラチオン)	0.00 mg/ m	
ジエチレングリコール	<u>10 ppm</u>	<u>_</u>
ジエチレングリコールモノブチルエーテル	60 mg/m^3	_
シクロヘキサン	100 ppm	_
シクロヘキシルアミン	_	5 ppm
シクロヘキセン	<u>20 ppm</u>	_
ジクロロエタン(1,1-ジクロロエタンに限	100 ppm	_
3。)	_	
ジクロロエチレン(1,1-ジクロロエチレン に限る。)	5 ppm	_
ジクロロジフルオロメタン (別名CFC-1 2)	1,000 ppm	_
ジクロロテトラフルオロエタン (別名CFC -114)	1,000 ppm	_
2, 4-ジクロロフェノキシ酢酸	2 mg/m^3	_
ジクロロフルオロメタン (別名HCFC-2 1)	10 ppm	_
1, 3-ジクロロプロペン	1 ppm	_
ジクロロベンゼン (パラージクロロベンゼン	10 ppm	_
に限る。)		
ジクロロベンゼン(メタージクロロベンゼン	2 ppm	_
に限る。)		
ジシアン	5 ppm	_
ジシクロペンタジエン	0.5 ppm	_
2, 6-ジーターシャリーブチルー4-クレ	10 mg/m^3	_
ゾール		
ジチオりん酸〇-エチル-〇-(4-メチル	<u>0.1 mg/m³</u>	_

チオフェニル) - S - ノルマループロピル (別		
名スルプロホス)		
<u>ジチオりん酸〇,〇一ジエチルーS-エチル</u>	0.05 mg/m^3	_
チオメチル (別名ホレート)		
<u>ジチオりん酸O, OージエチルーSー(ターシ</u>	0.01 mg/m^3	_
ャリーブチルチオメチル) (別名テルブホス)		
<u> ジチオりん酸O, OージメチルーSー[(4</u> -		
オキソー1, 2, 3ーベンゾトリアジンー3		
(4H) -イル) メチル] (別名アジンホスメ	1 mg/m^3	_
チル)		
ジフェニルアミン	5 mg/m^3	_
ジフェニルエーテル	1 ppm	_
ジボラン	0.01 ppm	_
N, N-ジメチルアセトアミド	5 ppm	_
N, N-ジメチルアニリン	25 mg/m^3	_
ジメチルアミン	2 ppm	_
ジメチルーパラーニトロフェニルチオホスフ	0.02 mg/m^3	_
ェイト(別名メチルパラチオン)		
臭化水素	<u>_</u>	<u>1 ppm</u>
臭素	_	0.2 ppm
しよう脳	2 ppm	_
水酸化カルシウム	0.2 mg/m^3	_
すず及びその化合物(ジブチルスズ=オキシ		
ド、ジブチルスズ=ジクロリド、ジブチルスズ	すずとして 0.1	
=ジラウラート、ジブチルスズビス(イソオク		_
チル=チオグリコレート)及びジブチルスズ	mg/m³	
=マレアートに限る。)		
すず及びその化合物(テトラブチルスズに限	すずとして 0.2	_
る。)	mg/m^3	
すず及びその化合物(トリフェニルスズ=ク	すずとして 0.003	_
ロリドに限る。)	mg/m^3	
すず及びその化合物(トリブチルスズ=クロ	すずとして 0.05	
リド及びトリブチルスズ=フルオリドに限	mg/m^3	_
る。)	mg/ 111	
すず及びその化合物(ブチルトリクロロスズ	すずとして 0.02	
に限る。)	mg/m³	
セレン	0.02 mg/m^3	1

4-ターシャリーブチルフェノール	0.5 mg/m^3	_
タリウム	0.02 mg/m^3	_
チオりん酸O, O-ジエチル-O-(2-イソ	0.01 mg/m^3	_
プロピルー6ーメチルー4ーピリミジニル)		
(別名ダイアジノン)		
<u>チオりん酸O, OージエチルーOー(3, 5,</u>	0.05 mg/m^3	_
6-トリクロロー2-ピリジル)(別名クロル		
<u>ピリホス)</u>		
<u>チオりん酸O, OージメチルーOー(2, 4,</u>	5 mg/m^3	=
<u>5-トリクロロフェニル)(別名ロンネル)</u>		
テトラエチルチウラムジスルフィド(別名ジ	2 mg/m^3	_
スルフィラム)		
テトラエチルピロホスフェイト(別名TEP	0.01 mg/m^3	_
P)	0. 01 mg/ m	
テトラクロロジフルオロエタン(別名CFC	50 ppm	_
-112)	o ppm	
1, 2, 3, 4-テトラヒドロナフタレン	<u>2 ppm</u>	_
テトラメチルチウラムジスルフィド(別名チ	0.2 mg/m^3	_
ウラム)		
トリエタノールアミン	1 mg/m³	_
トリクロロエタン(1,1,2-トリクロロエ	1 ppm	_
タンに限る。)		
トリクロロ酢酸	0.5 ppm	_
1, 1, 2-トリクロロー1, 2, 2-トリフ	500 ppm	_
ルオロエタン	**	
1, 1, 1-トリクロロー2, 2-ビス(4-		
メトキシフェニル) エタン (別名メトキシクロ	1 mg/m^3	_
ル)		
2, 4, 5-トリクロロフェノキシ酢酸	2 mg/m^3	_
トリクロロフルオロメタン(別名CFC-1 .、	=	1000 ppm
1)		
1, 2, 3-トリクロロプロパン**2	_	_
1, 2, 4-トリクロロベンゼン	0.5 ppm	<u> </u>
$N - (h \cup f \cup $	$\frac{5 \text{ mg/m}^3}{}$	<u> </u>
<u>6-テトラヒドロフタルイミド(別名キャプ</u>		
<u>タン)</u>		
トリニトロトルエン	0.05 mg/m^3	_

トリブロモメタン	0.5 ppm	_
トリメチルアミン	3 ppm	_
トリメチルベンゼン	10 ppm	_
トルイジン (パラートルイジン及びメタートル	4 mg/m^3	_
イジンに限る。)		_
<u> 1-ナフチル-N-メチルカルバメート(別</u>	0.5 mg/m^3	_
名カルバリル)		
ニコチン	0.5 mg/m^3	_
二酸化窒素	0.2 ppm	_
ニッケル	1 mg/m^3	_
<u>ニトリロ三酢酸</u>	3 mg/m^3	_
ニトロエタン	10 ppm	_
ニトログリセリン	0.01 ppm	_
ニトロプロパン(1-ニトロプロパンに限	0 000	
る。)	2 ppm	
ニトロプロパン(2-ニトロプロパンに限	_	_
<u>る。)*2</u>		
ニトロベンゼン	0.1 ppm	_
ニトロメタン	10 ppm	_
乳酸ノルマルーブチル	10 mg/m^3	_
ノナン(ノルマルーノナンに限る。)	200 ppm	_
ノルマルーブチルエチルケトン	70 ppm	_
ノルマルーブチルー2,3-エポキシプロピ	_	_
ルエーテル*2		
N-[1-(N-)]ルマルーブチルカルバモイ	1 mg/m^3	_
ル) - 1 H - 2 -ベンゾイミダゾリル] カルバ		
ミン酸メチル (別名ベノミル)		
パラーアニシジン	0.5 mg/m^3	_
パラーターシャリーブチルトルエン	1 ppm	_
パラーニトロアニリン	3 mg/m^3	_
パラーメトキシフェノール	10 mg/m^3	_
ビス (2-クロロエチル) エーテル	0.5 ppm	_
ビス (ジチオりん酸) S, S'-メチレン-O,	0.05 mg/m^3	_
O, O', O' -テトラエチル (別名エチオン)		
砒素及びその化合物(アルシンに限る。)※2	_	_
ヒドラジン及びその一水和物	0.01 ppm	_
ヒドロキノン	1 mg/m^3	_

ビニルトルエン	10 ppm	_
N-ビニル-2-ピロリドン	0.01 ppm	_
ビフェニル	3 mg/m^3	_
ピリジン	1 ppm	_
ピレトラム	2 mg/m^3	_
フェニルオキシラン	1 ppm	_
フェニルヒドラジン*2	_	_
フェニレンジアミン(オルトーフェニレンジ	_	_
アミンに限る。) **2		
フェニレンジアミン (パラーフェニレンジア ミン及びメターフェニレンジアミンに限る。)	0.1 mg/m^3	_
2-フェノキシエタノール	1 mg/m^3	_
フェノチアジン	0.5 mg/m^3	
ブタノール (ターシャリーブタノールに限 る。)	20 ppm	_
フタル酸ジエチル	30 mg/m^3	_
フタル酸ジーノルマルーブチル	0.5 mg/m^3	_
フタル酸ジメチル	5 mg/m^3	_
<u>フ</u> タル酸ノルマルーブチル=ベンジル	20 mg/m^3	_
フタル酸ビス (2-エチルヘキシル) (別名D		_
EHP)	1 mg/m^3	_
2,3-ブタンジオン(別名ジアセチル)	0.01 ppm	_
ブタン (ノルマルーブタンに限る。)	500 ppm	_
ブチルベンゼン(ノルマルーブチルベンゼン	<u>10 ppm</u>	_
<u>に限る。)</u>		
<u> 第化スルフリル</u>	<u>1 ppm</u>	
弗素及びその水溶性無機化合物(弗化亜鉛及	弗素として	_
<u>び弗化カリウムに限る。)</u>	2.5 mg/m^3	
2-ブテナール	_	0.3 ppm [*] 1
フルフラール	0.2 ppm	_
フルフリルアルコール	0.2 ppm	_
<u>プロパン</u>	1,000 ppm	<u>_</u>
<u>プロピオンアルデヒド</u>	<u>20 ppm</u>	<u>_</u>
プロピオン酸	10 ppm	_
プロピルアルコール(ノルマループロピルア	300 ppm	<u> </u>
<u>ルコールに限る。)</u>		
プロピレングリコールモノメチルエーテル	50 ppm	_

2-プロピン-1-オール	1 ppm	_
<u></u> <u></u> 	_	_
2-ブロモー2-クロロー1,1,1-トリフ	0.1 ppm	<u>_</u>
ルオロエタン (別名ハロタン)		_
ブロモクロロメタン	100 ppm	_
<u></u> ブロモトリフルオロメタン	1,000 ppm	_
1-ブロモプロパン	0.1 ppm	_
2-ブロモプロパン ^{※2}	_	_
ヘキサクロロエタン	1 ppm	_
1, 2, 3, 4, 10, 10-ヘキサクロロー		
6,7-エポキシ-1,4,4a,5,6,7,		
8,8a-オクタヒドローエンドー1,4-エ	0.1 mg/m^3	_
ンドー5,8ージメタノナフタレン(別名エン		
ドリン)		
ヘキサクロロシクロペンタジエン	<u>0.005 ppm</u>	_
ヘキサクロロヘキサヒドロメタノベンゾジオ	0.1 mg/m^3	
キサチエピンオキサイド (別名ベンゾエピン)		
ヘキサヒドロー1, 3, 5ートリニトロー1,	0.5 mg/m^3	
3, 5-トリアジン(別名シクロナイト)		
ヘキサメチレン=ジイソシアネート	<u>0.005 ppm</u>	<u> </u>
ヘキサン (2-メチルペンタンに限る。)	<u>200 ppm</u>	<u>_</u>
ヘプタン (ノルマルーヘプタンに限る。)	500 ppm	_
1,2,4-ベンゼントリカルボン酸1,2-無水物	0.0005 mg/m^3	0.002 mg/m^3
ペンタクロロエタン	2 ppm	_
1ーペンタナール	30 ppm	_
1ーペンタノール	100 ppm	_
	1 000	
ルブタンに限る。)	1,000 ppm	_
ほう酸及びそのナトリウム塩(四ほう酸ナト	ホウ素として 0.1	ホウ素として 0.75
リウム十水和物 (別名ホウ砂) に限る。)	mg/m³	mg/m^3
ホルムアミド	5 ppm	_
無水酢酸	0.2 ppm	_
無水マレイン酸	0.08 mg/m^3	_
メタクリル酸	20 ppm	_
メタクリル酸2, 3-エポキシプロピル*2	_	_
メタクリル酸メチル	20 ppm	_

メタクリロニトリル	1 ppm	_
メチラール	1,000 ppm	_
Nーメチルアニリン	2 mg/m^3	_
メチルアミン	4 ppm	_
N-メチルカルバミン酸 2-イソプロピルオ キシフェニル (別名プロポキスル)	0.5 mg/m^3	_
	0.05 mg/m³	
N-メチルカルバミン酸2, 3-ジヒドロー 2, 2-ジメチルー7-ベング「b] フラール	0.05 mg/m	-
2, 2-ジメチル-7-ベンゾ [b] フラニル (別名カルボフラン)		
メチルーターシャリーブチルエーテル (別名	50 ppm	
MTBE)	оо ррш	
メチルナフタレン	0.3 mg/m^3	_
N-メチル-2-ピロリドン		
	1 ppm	_
<u>2-メチルー2-ブタノール</u> 2-メチルブタン-1-オール	10 ppm	_
<u>2-メチルブタン-1-オール</u> 5-メチル-2-ヘキサノン	10 ppm	_
	10 ppm	_
2-メチルー2, 4-ペンタンジオール	120 mg/m ³	_
<u>S-メチル-N-(メチルカルバモイルオキ</u>	0.05 mg/m^3	=
<u>シ)チオアセチミデート(別名メソミル)</u>	0.4 / 3	
4, 4' -メチレンジアニリン	0.4 mg/m^3	_
1, 1'-メチレンビス (イソシアナトベンゼ	0.05 mg/m^3	=
$\frac{\mathcal{L}(\mathcal{L})(\mathcal{L})(\mathcal{L})(\mathcal{L})}{\mathcal{L}(\mathcal{L})(\mathcal{L})(\mathcal{L})(\mathcal{L})} = \mathcal{L}(\mathcal{L})(\mathcal$		
<u>イソシアネートに限る。)</u>		
メチレンビス $(4, 1-シ$ クロヘキシレン $) = $ ジイソシアネート	0.05 mg/m^3	_
1-(2-メトキシ-2-メチルエトキシ)-	50	
2ープロパノール	50 ppm	_
1-メトキシ-2-(2-メトキシエトキシ)	<u>1 ppm</u>	_
エタン		
モリブデン及びその化合物(三酸化モリブデ		<u>-</u>
<u>ン、モリブデン酸アンモニウム、モリブデン酸</u>	0.5 mg/m^3	
<u>ナトリウム及びリンモリブデン酸に限る。)</u>		
沃素	0.02 ppm	_
りん化水素	0.05 ppm	0.15 ppm
りん酸	1 mg/m^3	_
りん酸ジメチル=(E)-1-(N-メチルカ	0.05 mg/m^3	<u>_</u>

ルバモイル) - 1 - プロペン - 2 - イル (別名		
モノクロトホス)		
りん酸ジメチル=1-メトキシカルボニル-	0.01 mg/m^3	
1-プロペン-2-イル (別名メビンホス)	O. O1 mg/m	_
りん酸トリトリル (りん酸トリ(オルトートリ	0.03 mg/m^3	_
ル) に限る。)		
りん酸トリーノルマルーブチル	5 mg/m^3	
レソルシノール	10 ppm	_
六塩化ブタジエン	0.01 ppm	_
<u>ロテノン</u>	0.3 mg/m^3	

備考

- 1 この表の中欄及び右欄の値は、温度25度、1気圧の空気中における濃度を示す。
- 2 ※1の付されている短時間濃度基準値については、5-1の(2)のイの規定を適用するとともに、5-2の(3)の規定の適用の対象となる天井値として取り扱うものとする。
- 3 ※2の付されている物質については、発がん性が明確であるため、長期的な健康影響が生じない安全な閾値としての濃度基準値を設定できない物質である。事業者は、この物質に労働者がばく露される程度を最小限度にしなければならない。

別表第3-1

防じんマスクの種類			指定防護係数
取替え式	全面形面体	50	
		RS2又はRL2	14
		RS1又はRL1	4
半面形面体		RS3又はRL3	10
		RS2又はRL2	10
		RS1又はRL1	4
使い捨て式		DS3又はDL3	10
		DS2又はDL2	10
		DS1又はDL1	4

備考RS1、RS2、RS3、RL1、RL2、RL3、DS1、DS2、DS3、DL1、DL2及びDL3は、防じんマスクの規格(昭和63年労働省告示第19号)第1条第3項の規定による区分であること。

別表第3-2

防毒マスクの種類	指定防護係数
全面形面体	50
半面形面体	10

別表第3-3

電動ファン付き呼吸用保護具の種類				指定防護係数
防じん機能を	全面形面体	S級	PS3又はPL3	1,000
有する電動フ		A級	PS2又はPL2	90
アン付き呼吸		A級又はB級	PS1又はPL1	19
用保護具	半面形面体	S級	PS3又はPL3	50
		A級	PS2又はPL2	33
		A級又はB級	PS1又はPL1	14
	フード又はフ	S級	PS3又はPL3	25
	ェイスシール	A級	PS3又はPL3	20
	ドを有するも	S級又はA級	PS2又はPL2	20
	0	S級、A級又	PS1又はPL1	11
		はB級		
		全面形面体		1,000

防毒機能を有	防じん機能を	半面形面体	半面形面体	
する電動ファ	有しないもの	フード又はフュ	ニイスシールド	25
ン付き呼吸用	防じん機能を	全面形面体	PS3又はPL3	1,000
保護具	有するもの		PS2又はPL2	90
			PS1又はPL1	19
		半面形面体	PS3又はPL3	50
			PS2又はPL2	33
			PS1又はPL1	14
		フード又はフ	PS3又はPL3	25
		ェイスシール	PS2又はPL2	20
		ドを有するも	PS1又はPL1	11
		0		

備考 S級、A級及びB級は、電動ファン付き呼吸用保護具の規格(平成26年厚生労働省告示第455号)第2条第4項の規定による区分(別表第3-5において同じ。)であること。PS1、PS2、PS3、PL1、PL2及びPL3は、同条第5項の規定による区分(別表第3-5において同じ。)であること。

別表第3-4

その他の呼吸用保	その他の呼吸用保護具の種類			
循環式呼吸器	全面形面体	圧縮酸素形かつ陽圧形	10, 000	
		圧縮酸素形かつ陰圧形	50	
		酸素発生形	50	
	半面形面体	圧縮酸素形かつ陽圧形	50	
		圧縮酸素形かつ陰圧形	10	
		酸素発生形	10	
空気呼吸器 全面形面体		プレッシャデマンド形	10, 000	
		デマンド形	50	
	半面形面体	プレッシャデマンド形	50	
		デマンド形	10	
エアラインマスク	全面形面体	プレッシャデマンド形	1,000	
		デマンド形	50	
		一定流量形	1,000	
	半面形面体	プレッシャデマンド形	50	

		デマンド形	10
		一定流量形	50
	フード又はフェイ	一定流量形	25
	スシールド		
ホースマスク	全面形面体	電動送風機形	1,000
		手動送風機形又は肺力吸引形	50
	半面形面体	電動送風機形	50
		手動送風機形又は肺力吸引形	10
	フード又はフェイ	電動送風機形	25
	スシールドを有す		
	るもの		

別表第3-5

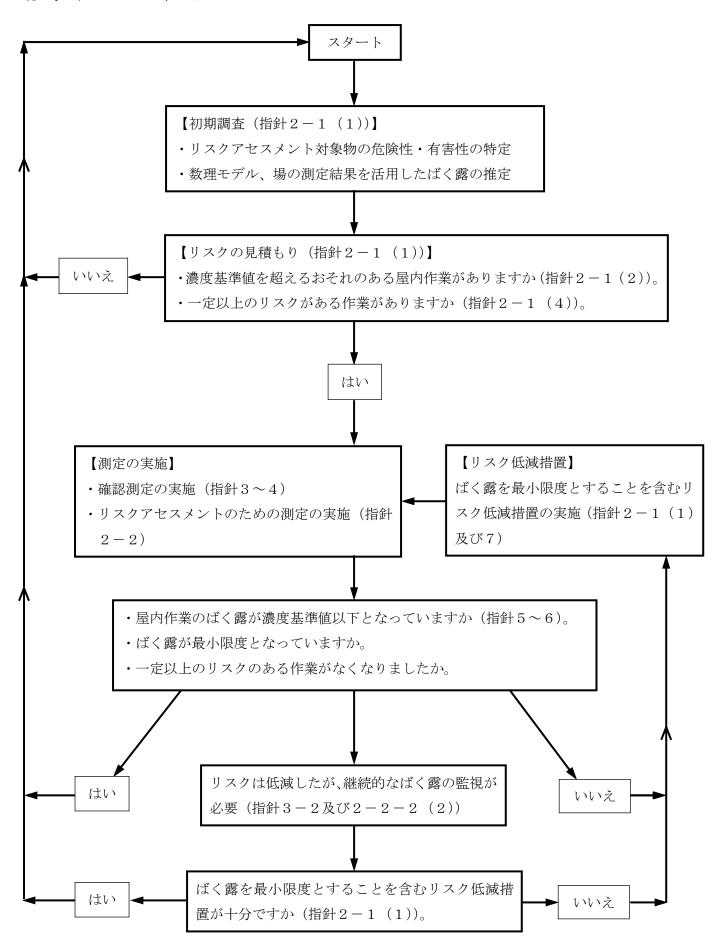
呼吸用保護具の種類		指定防護係数
防じん機能を有する電動ファン付き呼吸用保護具であって半面形面体を有するもの	S級かつPS3又はPL3	300
防じん機能を有する電動ファン付き呼吸用保護具であってフードを有するもの		1,000
防じん機能を有する電動ファン付き呼吸用保護具であってフェイスシールドを有するもの		300
防毒機能を有する電動ファン付き呼吸用保護具であって防じん機能を有するもののうち、半面形面体を有するもの	PS3又はPL3	300
防毒機能を有する電動ファ ン付き呼吸用保護具であっ て防じん機能を有するもの		1,000

のうち、フードを有するも		
Ø		
防毒機能を有する電動ファ		300
ン付き呼吸用保護具であっ		
て防じん機能を有するもの		
のうち、フェイスシールド		
を有するもの		
防毒機能を有する電動ファン	付き呼吸用保護具であって防じん機能を有	300
しないもののうち、半面形面		
防毒機能を有する電動ファン	付き呼吸用保護具であって防じん機能を有	1,000
しないもののうち、フードを	有するもの	
防毒機能を有する電動ファン	付き呼吸用保護具であって防じん機能を有	300
しないもののうち、フェイス		
フードを有するエアライン	一定流量形	1,000
マスク		

(参考1) 八時間時間加重平均値の計算方法

例1:8時間の濃度が0.15mg/m³の場合

八時間時間加重平均值 = $(0.15 \text{mg/m}^3 \times 8 \text{h})/8 \text{h}$ = 0.15mg/m^3


例 2 : 7時間 20 分 (7.33 時間) の濃度が 0.12mg/ m³で、40 分間 (0.67 時間) の濃度 がゼロの場合

八時間時間加重平均値 = $[(0.12 \text{mg/m}^3 \times 7.33 \text{h}) + (0 \text{mg/m}^3 \times 0.67 \text{h})]/8 \text{h}$ = 0.11mg/m^3

例 3 : 2時間の濃度が 0.1mg/m³で、2時間の濃度が 0.21mg/m³で、4時間の濃度がゼロの場合

八時間時間加重平均値 = $[(0.1 \text{mg/m}^3 \times 2\text{h}) + (0.21 \text{mg/m}^3 \times 2\text{h}) + (0 \text{mg/m}^3 \times 4\text{h})]/8\text{h}$ = 0.078mg/m^3

(参考2) フローチャート

都道府県労働局長 殿

厚生労働省労働基準局長 (公印省略)

「労働安全衛生規則第五百七十七条の二第二項の規定に基づき厚生労働大臣が定める物及び厚生労働大臣が定める濃度の基準の一部を改正する件」の告示等について

「労働安全衛生規則第五百七十七条の二第二項の規定に基づき厚生労働大臣が定める物及び厚生労働大臣が定める濃度の基準の一部を改正する件」(令和7年厚生労働省告示第269号。以下「改正告示」という。)が令和7年10月8日に告示され、令和8年10月1日から適用することとされたところである。

また、化学物質による健康障害防止のための濃度の基準の適用等に関する技術上の指針の一部を改正する件(技術上の指針公示第28号。以下「改正指針」という。)が令和7年10月8日付け官報に公示され、令和8年10月1日に適用される。

これらの改正告示及び改正指針の内容等については、下記のとおりであるので、関係者への周知徹底を図るとともに、その運用に遺漏なきを期されたい。

記

第1 改正告示の概要等

1 概要

労働安全衛生規則第五百七十七条の二第二項の規定に基づき厚生 労働大臣が定める物及び厚生労働大臣が定める濃度の基準(令和5年 厚生労働省告示第177号)に規定される、労働安全衛生規則第577条の 2第2項の規定に基づき厚生労働大臣が定める物として、新たにアク リル酸2ーエチルヘキシル等78物質を追加し、当該物質の濃度基準値 を定めるとともに、酢酸ーセカンダリーブチルを既に濃度基準値が定 められている酢酸ブチル(酢酸ターシャリーブチルに限る。)に追加 するものであること。なお、これらの物の種類及び濃度基準値の一覧 は別添1のとおりであること。

2 適用期日

令和8年10月1日

第2 改正指針の概要等

1 概要

改正告示により新たに濃度基準値が定められた物質(78物質)のうちメタージクロロベンゼンを除く77物質について化学物質による健康障害防止のための濃度の基準の適用等に関する技術上の指針(令和5年4月27日技術上の指針公示第24号。以下「技術上の指針」という。)において測定方法を定めるとともに、メタージクロロベンゼンは、すでに測定方法が定められているジクロロベンゼン(パラージクロロベンゼンに限る。)と同様の測定方法であるため、ジクロロベンゼン(パラージクロロベンゼンに限る。)に追加したものである。さらに、酢酸ブチル(酢酸ターシャリーブチルに限る。)に酢酸ーセカンダリーブチルを追加したものであること。

また、発がん性が明確な物質については、技術上の指針において濃度基準値は設定できないこと及び当該物質については労働者のばく露を最小限にしなればならないことを定めており、発がん性が明確なため濃度基準値が設定できない物質についても測定方法を定めている。新たに発がん性が明確なため濃度基準値が設定できないとされた2物質(2-=トロプロパン及びブロモエチレン)についても測定方法を定めたものであること。

なお、今般の改正において追加された物の種類及び測定方法等については、別添2の新旧対照表のとおりであること。

2 適用期日

令和8年10月1日

第3 細部事項

告示改正により新たに追加されたトルイジン(パラートルイジン及びメタートルイジンに限る。)、弗素及びその水溶性無機化合物(弗化亜鉛及び弗化カリウムに限る。)、モリブデン及びその化合物(三酸化モリブデン、モリブデン酸アンモニウム、モリブデン酸ナトリウム及びリンモリブデン酸に限る。)並びに改正された酢酸ブチル(酢酸ーセカンダリーブチル及び酢酸ターシャリーブチルに限る。)については、複数の異性体それぞれに濃度基準値が定められていることから、これらの異性体が混在する場合、定められた異性体ごとに濃度基準値が適用されるものであること。

物の種類

八時間濃度基準値 短時間濃度基準値

1/0 / 7 / 里块	八时间版及至毕旭	应时间候及至中间
アクリル酸2-エチルヘキシル	2 ppm	_
アクリル酸2-ヒドロキシプロピル	0.5ppm	_
2-アミノ-2-メチル-1-プロパノール	1 ppm	_
イソオクタノール	50ppm	_
4, 4'ーイソプロピリデンジフェノール(別名	O /3	
ビスフェノールA)	$2\mathrm{mg/m^3}$	_
N-イソプロピルアミノホスホン酸O-エチルー		
〇一(3-メチルー4-メチルチオフェニル)(別	0.05mg/m^3	_
名フェナミホス)		
N-イソプロピル-N'-フェニルーパラーフェ	10mg/m^3	_
ニレンジアミン	J.	
O-エチル-S-フェニル=エチルホスホノチオ	0.1mg/m^3	_
ロチオナート(別名ホノホス)		
1-エトキシー2-プロパノール	60ppm	_
3-エトキシプロパン酸エチル	100ppm	_
1,2-エポキシー3-イソプロポキシプロパン	1 ppm	_
塩化シアン	_	0.3ppm
オルトーセカンダリーブチルフェノール	$20 \mathrm{mg/m^3}$	_
過酢酸	_	0.5ppm
ぎ酸	5 ppm	_
ぎ酸エチル	_	100ppm
2-クロロー1, 3-ブタジエン	1 ppm	_
酢酸1-エトキシー2-プロピル	20ppm	_
酢酸ブチル(酢酸ーセカンダリーブチル及び酢酸	00	150
ターシャリーブチルに限る。)※2	20ppm	150ppm
酢酸ベンジル	10ppm	_
酢酸1-メトキシー2-プロピル	50ppm	_
ジイソブチルケトン	15ppm	_
ジエチレングリコール	10ppm	_
シクロヘキセン	20ppm	_
る。)	2 ppm	_
ジシアン	5 ppm	_
	1	

フェニル) - S - J ルマループロピル (別名スル プロホス) ジチオりん酸〇, 〇 - ジェチルーS - エチルチオ メチル (別名ホレート) ジチオりん酸〇, 〇 - ジェチルーS - (ターシャ リーブチルチオメチル) (別名テルブホス) ジメチルーパラーニトロフェニルチオホスフェイト (別名メチルパラチオン) 臭化水素 - 1ppm	ジチオりん酸〇-エチル-〇-(4-メチルチオ		
プロホス) ジチオりん酸〇,〇ージエチルーSーエチルチオ メチル(別名ホレート) ジチオりん酸〇,〇ージエチルーSー(ターシャ リーブチルチオメチル)(別名テルブホス) ジメチルーパラーニトロフェニルチオホスフェイ ト(別名メチルパラチオン) 夏化水素 - 1ppm 4-ターシャリーブチルフェノール チオりん酸〇,〇ージエチルー〇ー(3,5,6 ートリクロロ-2ーピリジル)(別名クロルピリホ ス) チオりん酸〇,〇ージエチルー〇ー(2,4,5 ートリクロロフェニル)(別名ロンネル) 1,2,3,4ーテトラヒドロナフタレン トリクロロフルオロメタン(別名CFC-11) - 1000ppm 1,2,4ートリクロロメチルチオ) - 1,2,3,6 ーテトラヒドロフタルイミド(別名キャブタン) トルイジン(パラートルイジン及びメタートルイジンに限る。) ニコチン - トリロエチル・アナール 10mg/m³ - 10mg/m³		0.1mg/m^3	_
ジチオりん酸O, OージエチルーSーエチルチオメチル (別名ホレート) 0.05mg/m³ - ジチオりん酸O, OージエチルーSー (ターシャリーブチルチオメチル) (別名テルブホス) 0.01mg/m³ - ジメチルーパラーニトロフェニルチオホスフェイト (別名メチルパラチオン) 0.02mg/m³ - 臭化水素 - 1ppm 4ーターシャリーブチルフェノール 0.5mg/m³ - チオりん酸O, OージエチルーOー (3, 5, 6) - - ートリクロロー2ーピリジル) (別名クロルピリホス) 0.05mg/m³ - チオりん酸O, OージメチルーOー (2, 4, 5) 5mg/m³ - トリクロロフェール) (別名ロンネル) 2ppm - 1, 2, 3, 4ーテトラヒドロナフタレン 2ppm - トリクロロフルオロメタン (別名CFC-11) - 1000ppm 1, 2, 4ートリクロロメチルチオ) - 1, 2, 3, 6 - - ートリクロロメチルチオン) - 1, 2, 3, 6 - - ートリクロロメチルイジン及びメタートルイジン及びメタートルイジンに限る。) - - ニーザン 0.5mg/m³ - エーチン 10mg/m³ - エートリロ三酢酸 3mg/m³ - 乳酸ノルマルーブチル 10mg/m³ - アンメトキシフェノール 2mg/m³ - アントラム・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア		O. Ting/in	
メチル (別名ホレート) 0.05mg/m³ - ジチオりん酸O、OージエチルーSー(ターシャ リープチルチオメチル)(別名テルプホス) 0.01mg/m³ - ジメチルーパラーニトロフェニルチオホスフェイト(別名メチルパラチオン) 0.02mg/m³ - 臭化水素 - 1ppm 4 ーターシャリーブチルフェノール チオりん酸O、OージエチルーOー(3、5、6 ートリクロロー2ーピリジル)(別名クロルピリホ ス) - - チオりん酸O、OージメチルーOー(2、4、5 ートリクロロフェニル)(別名ロンネル) 5mg/m³ - 1、2、3、4ーテトラヒドロナフタレン トリクロロフルオロメタン(別名CFC-11) 1000ppm - 1、2、4ートリクロロペンゼン Nー(トリクロロメチルチオ)ー1、2、3、6 ーテトラヒドロフタルイミド(別名キャブタン) 5mg/m³ - Nーイジンに限る。) 5mg/m³ - ニリワ三酢酸 乳酸ノルマルーブチル バラーメトキシフェノール ロス (ジチオりん酸) S、S' ーメチレンーO、O、O、DSppm - ボタンドキシエチル (別名エチオン) 0.5ppm - ビントラム 2mg/m³ - 2ーフェノキシエタノール 1mg/m³ - フタル酸ジメチル 5mg/m³ - フタル酸ノルマループチル=ベンジル 20mg/m³ - 2、3 ープタンジオン (別名ジアセチル) 0.01ppm -			
リーブチルチオメチル) (別名アルブホス) 0.01mg/m³ - ジメチルーパラーニトロフェニルチオホスフェイト (別名メチルパラチオン) 0.02mg/m³ - 臭化水素 - lppm 4ーターシャリーブチルフェノール 0.5mg/m³ - チオりん酸〇、〇ージメチルー〇ー (3, 5, 6) 0.05mg/m³ - ートリクロロー2ービリジル) (別名クロルピリホス) 0.05mg/m³ - チオりん酸〇、〇ージメチルー〇ー (2, 4, 5) 5mg/m³ - ートリクロロフェニル) (別名ロンネル) 2ppm - 1, 2, 3, 4ーテトラヒドロナクレン 2ppm - トリクロロフェニル) (別名ロンネル) 0.5ppm - 1, 2, 4ートリクロロベンゼン 0.5ppm - Nー(トリクロロメチルチオン・オンドナリース・メートルイジン及びメタートルイジン及びメタートルイジンに限る。) - 5mg/m³ - ニーチン 0.5mg/m³ - - ニートリロ三酢酸 3mg/m³ - - 乳酸ノルマルーブチル 10mg/m³ - ルス・シース・シース・シース・シース・シース・シース・シース・シース・シース・シー		0.05mg/m ³	_
リープチルチオメチル)(別名テルプホス) ト (別名メチルーパラーニトロフェニルチオホスフェイト (別名メチルペラチオン) 臭化水素	ジチオりん酸〇, 〇-ジエチル-S- (ターシャ	0.01./2	
ト(別名メチルパラチオン) 0.02m/m³ - 臭化水素 - 1ppm 4-ターシャリープチルフェノール 0.5mg/m³ - チオりん酸〇、〇ージメチルー〇ー(2、4、5 ートリクロロフェニル)(別名ロンネル) 5mg/m³ - 1、2、3、4ーテトラヒドロナフタレン 2ppm - トリクロロフルオロメタン(別名CFC-11) 1000ppm - 1、2、4ートリクロロベンゼン 0.5ppm - Nー(トリクロロメチルチオ)ー1、2、3、6 ーテトラヒドロフタルイミド(別名キャブタン) - - トルイジン及びメタートルイジン及びメタートルイジン及びメタートルイジンに限る。) - - ニコチン 0.5mg/m³ - ニトリロ三酢酸 3 mg/m³ - 乳酸ノルマループチル 10mg/m³ - パラーメトキシフェノール 10mg/m³ - ボラーメトキシフェノール 0.5ppm - ボフタン酸ジメチル 2mg/m³ - フタル酸ジメチル 5mg/m³ - フタル酸フルマループチル=ベンジル 20mg/m³ - 2、3 ープタンジオン (別名ジアセチル) 0.01ppm -	リーブチルチオメチル) (別名テルブホス)	0.01mg/m ³	
ト (別名メチルバラテオン) 1ppm 臭化水素 - 1ppm 4 - ターシャリーブチルフェノール 0.5mg/m³ - チオりん酸〇、〇ージエチルー〇ー(2、4、5 - - トリクロロー2ーピリジル)(別名クロルピリホ 5mg/m³ - チオりん酸〇、〇ージメチルー〇ー(2、4、5 5mg/m³ - トリクロロフエニル)(別名ロンネル) 2ppm - トリクロロフルオロメタン(別名CFC-11) 1000ppm - 1、2、4ートリクロロベンゼン 0.5ppm - Nー(トリクロロメチルチオ)-1、2、3、6 - - - ーテトラヒドロフタルイミド(別名キャプタン) 5mg/m³ - トルイジン(パラートルイジン及びメタートルイジン及びメタートルイジンに限る。) - - ニコチン 0.5mg/m³ - ニトリロ三酢酸 3mg/m³ - 乳酸ノルマループチル 10mg/m³ - ルペラーメトキシフェノール 10mg/m³ - レス(2ークロロエチル)エーテル 0.5ppm - ビス)・ティテリニエチャン(別名エチオン) 2mg/m³ - ピレトラム 2mg/m³ - コーナシエクトル 5mg/m³ - フタル酸ジメチル 5mg/m³ - フタル酸ジンチル 5mg/m³ - フタル酸ジンチル 5mg/m³ - </td <td>ジメチルーパラーニトロフェニルチオホスフェイ</td> <td>$0.02ma/m^3$</td> <td>_</td>	ジメチルーパラーニトロフェニルチオホスフェイ	$0.02ma/m^3$	_
4 - ターシャリーブチルフェノール チオりん酸〇, 〇ージエチルー〇ー(3, 5, 6 - トリクロロー2ーピリジル)(別名クロルピリホ ス) チオりん酸〇, 〇ージメチルー〇ー(2, 4, 5 - トリクロロフェニル)(別名ロンネル) 1, 2, 3, 4 - テトラヒドロナフタレン トリクロロフルオロメタン(別名CFC-11) - 1000ppm 1, 2, 4 - トリクロロベンゼン Nー(トリクロロメチルチオ)ー1, 2, 3, 6 - テトラヒドロフタルイミド(別名キャブタン) トルイジン(パラートルイジン及びメタートルイジンに限る。) ニコチン ニトリロ三酢酸 3 mg/m³ - 10mg/m³ - 1	ト(別名メチルパラチオン)	0. 02mg/m	
チオりん酸〇、〇ージエチルー〇ー(3、5、6 -トリクロロー2ーピリジル)(別名クロルピリホス) 0.05mg/m³ - チオりん酸〇、〇ージメチルー〇ー(2、4、5 ートリクロロフェニル)(別名ロンネル) 5 mg/m³ - 1、2、3、4ーテトラヒドロナフタレン 2 ppm - トリクロロフルオロメタン(別名CFC-1 1) 1000ppm - 1、2、4ートリクロロベンゼン 0.5ppm - Nー(トリクロロメチルチオ)-1、2、3、6 ーテトラヒドロフタルイミド(別名キャプタン) 5 mg/m³ - トルイジン(パラートルイジン及びメタートルイジン及びメタートルイジン(パラートルイジン及びメタートルイジン(フェーチン 4 mg/m³ - ニコチン 0.5mg/m³ - ニコチン 10mg/m³ - ニコチン 10mg/m³ - エトリロ三酢酸 3 mg/m³ - 乳酸ノルマルーブチル 10mg/m³ - ボラストキシフェノール 0.5ppm - ボス(2 - クロロエチル)エーテル 0.5ppm - ボス(ジチオりん酸)S、S、* - メチレンー〇、〇、〇、〇、〇・〇・一テトラエチル(別名エチオン) 0.05mg/m³ - ピレトラム 2 mg/m³ - 2 ー フェノキシエタノール 1 mg/m³ - フタル酸ジメチル 5 mg/m³ - フタル酸シメチル 20mg/m³ - フタンジオン(別名ジアセチル) 0.01ppm -	臭化水素	_	1ppm
- トリクロロー2 - ピリジル)(別名クロルピリホ ス) デオりん酸〇, 〇ージメチルー〇ー(2、4、5	4-ターシャリーブチルフェノール	0.5mg/m^3	_
ス) チオりん酸O, OージメチルーOー(2、4、5 hg/m³ - トリクロロフェニル)(別名ロンネル) 5 mg/m³ - 1、2、3、4ーテトラヒドロナフタレン 2 ppm - 1000ppm - 1000pp	チオりん酸O, O-ジエチル-O-(3, 5, 6		
チオりん酸O、OージメチルーOー(2、4、5 ートリクロロフェニル)(別名ロンネル) 5 mg/m³ - 1、2、3、4ーテトラヒドロナフタレン トリクロロフルオロメタン(別名CFC-11) 2 ppm - トリクロロフルオロメタン(別名CFC-11) - 1000ppm 1、2、4ートリクロロベンゼン Nー(トリクロロメチルチオ)-1、2、3、6 ーテトラヒドロフタルイミド(別名キャプタン) トルイジン(パラートルイジン及びメタートルイ ジンに限る。) 5 mg/m³ - ニーチン ジンに限る。) - 4 mg/m³ - ニーチン ジンに限る。) 3 mg/m³ - ニーチン ジンに限る。) 10mg/m³ - ニーチン ジンに限る。) 10mg/m³ - ニーチン ジンに限る。) 10mg/m³ - ニーチン ジンに限る。) 10mg/m³ - ニーチン コートリロ三酢酸 リルマルーブチルラエノール コーデン コートリロニー・コート・コート・コート・コート・コート・コート・コート・コート・コート・コー	ートリクロロー2ーピリジル)(別名クロルピリホ	0.05mg/m^3	_
- トリクロロフェニル)(別名ロンネル) 1、2、3、4 - テトラヒドロナフタレン 2 ppm - 1000ppm - 1、2、4 - トリクロロベンゼン 0.5ppm - 1、2、4 - トリクロロベンゼン 0.5ppm - 1、2、4 - トリクロロベンゼン 0.5ppm - 1、2、4 - トリクロロメチルチオ) - 1、2、3、6 - テトラヒドロフタルイミド(別名キャプタン) 5 mg/m³ - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	,		
- トリクロロフェニル) (別名ロンネル) 1, 2, 3, 4 - テトラヒドロナフタレン 2 ppm - トリクロロフルオロメタン (別名CFC-11) - 1000ppm - ハー (トリクロロメチルチオ) - 1, 2, 3, 6 - テトラヒドロフタルイミド (別名キャプタン) トルイジン (パラートルイジン及びメタートルイジン (パラートルイジン及びメタートルイジン (パラートルイジン及びメタートルイジン (パラートルイジン及びメタートルイジンに限る。) - コチン - 10mg/m³		5 mg/m^3	_
トリクロロフルオロメタン (別名CFC-11) - 1000ppm 1, 2, 4ートリクロロベンゼン 0.5ppm - Nー (トリクロロメチルチオ) - 1, 2, 3, 6 ーテトラヒドロフタルイミド (別名キャプタン) 5 mg/m³ - トルイジン (パラートルイジン及びメタートルイ ジンに限る。) 4 mg/m³ - ニコチン ニトリロ三酢酸 3 mg/m³ - 乳酸ノルマループチル 10mg/m³ - パラーメトキシフェノール 10mg/m³ - ピス (2ークロロエチル) エーテル 0.5ppm - ピス (ジチオりん酸) S, S'ーメチレンーO, O, O', O' ーテトラエチル (別名エチオン) 0.05mg/m³ - ピレトラム 2 mg/m³ - 2ーフェノキシエタノール 1 mg/m³ - フタル酸ジメチル 5 mg/m³ - フタル酸ノルマループチル=ベンジル 20mg/m³ - 2, 3 ーブタンジオン (別名ジアセチル) 0.01ppm -		0 mg/ m	
1、2、4-トリクロロベンゼン 0.5ppm - N-(トリクロロメチルチオ) - 1、2、3、6 - テトラヒドロフタルイミド (別名キャプタン) 5 mg/m³ - トルイジン (パラートルイジン及びメタートルイ ジンに限る。) 4 mg/m³ - コチン 0.5mg/m³ - コチン 0.5mg/m³ - コチン 10mg/m³ - コチリロ三酢酸 3 mg/m³ - コケンメトキシフェノール 10mg/m³ - コケンス (2-クロロエチル) エーテル 0.5ppm - コケンス (ジチオりん酸) S、S、-メチレンーO、O、O、O、O、O、一テトラエチル (別名エチオン) ピレトラム 2 mg/m³ - コケンドラム 2 mg/m³ - コケンル 1 mg/m³ - コケル酸ジメチル 5 mg/m³ - コケル酸ジメチル 5 mg/m³ - コケル酸シメチル 5 mg/m³ - コケル酸ノルマルーブチル=ベンジル 20mg/m³ - コケル酸ノルマルーブチル=ベンジル 20mg/m³ - コケンジオン (別名ジアセチル) 0.01ppm - コケースカーカーカーカーカーカーカーカーカーカーカーカーカーカーカーカーカーカーカ	1, 2, 3, 4ーテトラヒドロナフタレン	2 ppm	_
N- (トリクロロメチルチオ) -1, 2, 3, 6 -テトラヒドロフタルイミド (別名キャプタン) トルイジン (パラートルイジン及びメタートルイ ジンに限る。) ニコチン	トリクロロフルオロメタン(別名CFC-11)	_	1000ppm
ーテトラヒドロフタルイミド (別名キャプタン) 5 mg/m³ - 1	1, 2, 4-トリクロロベンゼン	0.5ppm	_
ーテトフヒドロフタルイミド (別名キャプタン) トルイジン (パラートルイジン及びメタートルイ ジンに限る。) ニコチン	N-(トリクロロメチルチオ) -1, 2, 3, 6	5 mg/m ³	_
ジンに限る。) 4 mg/m³ - ニコチン 0.5 mg/m³ - ニトリロ三酢酸 3 mg/m³ - 乳酸ノルマルーブチル 10 mg/m³ - パラーメトキシフェノール 10 mg/m³ - ビス(2 ークロロエチル)エーテル 0.5 ppm - ビス(ジチオりん酸)S, S'ーメチレンーO, O, O', O'ーテトラエチル(別名エチオン) 0.05 mg/m³ - ピレトラム 2 mg/m³ - 2 ーフェノキシエタノール 1 mg/m³ - フタル酸ジメチル 5 mg/m³ - フタル酸ノルマルーブチル=ベンジル 20 mg/m³ - 2, 3 ーブタンジオン(別名ジアセチル) 0.01 ppm -	ーテトラヒドロフタルイミド (別名キャプタン)	O mg/ m	
ジンに限る。) 0.5 mg/m³ - ニコチン 0.5 mg/m³ - ニトリロ三酢酸 3 mg/m³ - 乳酸ノルマルーブチル 10 mg/m³ - パラーメトキシフェノール 10 mg/m³ - ビス(2 ークロロエチル)エーテル 0.5 ppm - ビス(ジチオりん酸)S, S'ーメチレンーO, O, O', O'ーテトラエチル(別名エチオン) 0.05 mg/m³ - ピレトラム 2 mg/m³ - 2 ーフェノキシエタノール 1 mg/m³ - フタル酸ジメチル 5 mg/m³ - フタル酸ノルマルーブチル=ベンジル 20 mg/m³ - 2, 3 ーブタンジオン(別名ジアセチル) 0.01 ppm -		4 mg/m^3	_
ニトリロ三酢酸 3 mg/m³ - 乳酸ノルマルーブチル 10mg/m³ - パラーメトキシフェノール 10mg/m³ - ビス (2-クロロエチル) エーテル 0.5ppm - ビス (ジチオりん酸) S, S'ーメチレンーO, O, O', O'ーテトラエチル (別名エチオン) 0.05mg/m³ - ピレトラム 2 mg/m³ - 2-フェノキシエタノール 1 mg/m³ - フタル酸ジメチル 5 mg/m³ - フタル酸ノルマルーブチル=ベンジル 20mg/m³ - 2, 3ーブタンジオン (別名ジアセチル) 0.01ppm -	ジンに限る。)	_	
乳酸ノルマルーブチル 10mg/m³ - 10m	ニコチン	0.5mg/m^3	_
パラーメトキシフェノール 10mg/m³ - ビス (2ークロロエチル) エーテル 0.5ppm - ビス (ジチオりん酸) S, S'ーメチレンーO, O, O', O'ーテトラエチル (別名エチオン) 0.05mg/m³ - ピレトラム 2 mg/m³ - 2 mg/m³ - フタル酸ジメチル 5 mg/m³ - フタル酸ジメチル 5 mg/m³ - フタル酸ノルマルーブチル=ベンジル 20mg/m³ - 2, 3ーブタンジオン (別名ジアセチル) 0.01ppm -	ニトリロ三酢酸	$3\mathrm{mg/m^3}$	_
ビス (2-クロロエチル) エーテル 0.5ppm - ビス (ジチオりん酸) S, S' -メチレン-O, O, O', O' -テトラエチル (別名エチオン) 0.05mg/m³ - ピレトラム 2 mg/m³ - 2-フェノキシエタノール 1 mg/m³ - フタル酸ジメチル 5 mg/m³ - フタル酸ノルマルーブチル=ベンジル 20mg/m³ - 2, 3-ブタンジオン (別名ジアセチル) 0.01ppm -	乳酸ノルマルーブチル	10mg/m^3	_
ビス(ジチオりん酸)S, S' -メチレン-O, O, O', O' -テトラエチル(別名エチオン) 0.05mg/m³ - ピレトラム 2 mg/m³ - 2-フェノキシエタノール 1 mg/m³ - フタル酸ジメチル 5 mg/m³ - フタル酸ノルマルーブチル=ベンジル 20mg/m³ - 2, 3-ブタンジオン(別名ジアセチル) 0.01ppm -	パラーメトキシフェノール	$10 \mathrm{mg/m^3}$	_
O, O', O', -テトラエチル (別名エチオン) 0.05mg/m³ - ピレトラム 2 mg/m³ - 2-フェノキシエタノール 1 mg/m³ - フタル酸ジメチル 5 mg/m³ - フタル酸ノルマルーブチル=ベンジル 20mg/m³ - 2, 3-ブタンジオン (別名ジアセチル) 0.01ppm -	ビス (2-クロロエチル) エーテル	0.5ppm	_
O, O', O' ーテトラエチル (別名エチオン) 2 mg/m³ - ピレトラム 2 mg/m³ - 2 ーフェノキシエタノール 1 mg/m³ - フタル酸ジメチル 5 mg/m³ - フタル酸ノルマルーブチル=ベンジル 20mg/m³ - 2, 3 ーブタンジオン (別名ジアセチル) 0.01ppm -	ビス (ジチオりん酸) S, S' -メチレン-O,	0.05/3	
2-フェノキシエタノール 1 mg/m³ - フタル酸ジメチル 5 mg/m³ - フタル酸ノルマルーブチル=ベンジル 20mg/m³ - 2, 3-ブタンジオン (別名ジアセチル) 0.01ppm -	O, O', O' -テトラエチル (別名エチオン)	U. Ubmg/m	_
フタル酸ジメチル 5 mg/m³ - フタル酸ノルマルーブチル=ベンジル 20mg/m³ - 2, 3-ブタンジオン (別名ジアセチル) 0.01ppm -	ピレトラム	$2\mathrm{mg/m^3}$	_
フタル酸ノルマルーブチル=ベンジル 20mg/m³ - 2, 3ーブタンジオン (別名ジアセチル) 0.01ppm -	2-フェノキシエタノール	$1 \overline{\text{mg/m}^3}$	_
2, 3-ブタンジオン (別名ジアセチル) 0.01ppm -	フタル酸ジメチル	$5\mathrm{mg/m^3}$	_
	フタル酸ノルマルーブチル=ベンジル	$20 \mathrm{mg/m^3}$	_
ブタン (ノルマルーブタンに限る。) 500ppm -	2, 3-ブタンジオン(別名ジアセチル)	0.01ppm	_
	ブタン (ノルマルーブタンに限る。)	500ppm	_

ブチルベンゼン(ノルマルーブチルベンゼンに限	1.0	
る。)	10ppm	
**。 弗化スルフリル	1 ppm	_
弗素及びその水溶性無機化合物(弗化亜鉛及び弗	弗素として	
化カリウムに限る。)	2.5mg/m^3	
プロパン	1000ppm	_
プロピオンアルデヒド	20ppm	_
プロピルアルコール(ノルマループロピルアルコ	300ppm	
ールに限る。)	Зооррш	
2-プロピン-1-オール	1 ppm	_
2-ブロモー2-クロロー1, 1, 1-トリフル	0.1ppm	
オロエタン (別名ハロタン)	0. 1ppiii	
ブロモクロロメタン	100ppm	_
ヘキサクロロシクロペンタジエン	0.005ppm	_
ヘキサクロロヘキサヒドロメタノベンゾジオキサ チエピンオキサイド(別名ベンゾエピン)	0.1mg/m^3	_
ヘキサヒドロー1、3、5ートリニトロー1、		
3,5ートリアジン(別名シクロナイト)	0.5mg/m^3	_
ヘキサン(2-メチルペンタンに限る。)	200ppm	_
ペンタクロロエタン	2 ppm	_
1ーペンタナール	30ppm	_
1ーペンタノール	100ppm	_
ホルムアミド	5 ppm	_
N-メチルカルバミン酸2, 3-ジヒドロ-2,		
2-ジメチル-7-ベンゾ [b] フラニル (別名	0.05mg/m^3	_
カルボフラン)		
メチルナフタレン	0.3mg/m^3	_
N-メチル-2-ピロリドン	1 ppm	_
2-メチルー2-ブタノール	10ppm	_
2-メチルブタン-1-オール	10ppm	_
S-メチル-N- (メチルカルバモイルオキシ)		
チオアセチミデート(別名メソミル)	$0.05 \mathrm{mg/m^3}$	_
1, 1'ーメチレンビス (イソシアナトベンゼン		
) (メチレンビス(4, 1-フェニレン)=ジイソシ	0.05mg/m^3	
アネートに限る。)		

1-メトキシ-2- (2-メトキシエトキシ) エ タン	1 ppm	_
モリブデン及びその化合物(三酸化モリブデン、 モリブデン酸アンモニウム、モリブデン酸ナトリ ウム及びリンモリブデン酸に限る。)	モリブデンとして 0.5mg/m ³	_
りん酸ジメチル= $(E) - 1 - (N - メチルカル バモイル) - 1 - プロペン - 2 - イル (別名モノ クロトホス)$	$0.05 \mathrm{mg/m^3}$	_
ロテノン	0.3mg/m^3	_

備考

- ※1 この表の中欄及び右欄の値は、温度25度、1気圧の空気中における濃度を示す。
- ※2 酢酸ブチル(<u>酢酸ーセカンダリーブチル</u>及び酢酸ターシャリーブチルに限る。)については、本改正で下線部の「酢酸ーセカンダリーブチル」が追加されたもの。

化学物質による健康障害防止のための濃度の基準の適用等に関する技術上の指針 新旧対照表

(傍線部分は改正部分)

							(1労紛	は以上部分は以上部分
改	正後				改	正	前	
化学物質による健康障害防止のための濃度の基準の適用等に関する			化学物質	質による健康	障害防止の	のための	濃度の基準の	適用等に関する
技術上の指針			技術上6	り指針				
令和5年4	月 27 日 技術上の	指針公示第 24 号			令和5年	4月27	日 技術上の	指針公示第 24 号
改正 令和6年	5月8日 技術上の	指針公示第 26 号		改正	令和6年	F5月8	日 技術上の	指針公示第 26 号
改正 令和7年9月	月 19 日 - 技術上の	指針公示第 27 号		改正	令和7年9	9月19日	技術上の	指針公示第 27 号
改正 令和7年10	月8日 技術上の	指針公示第 28 号						
1~7 (略)			$1 \sim 7$	(略)				
別表 1 物の種類別の試料採取方法及び分析方法		別表 1	物の種類別	の試料採用	取方法及	び分析方法		
物の種類	試料採取方法	分析方法		物の種	重類	計	以料採取方法	分析方法
(m々)	(m々)	(m々)	(四々)				(m々)	(m々)

物の種類	試料採取方法	分析方法
(略)	(略)	(略)
アクリル酸エチル	(略)	(略)
アクリル酸2-エチルヘキシル	固体捕集方法	ガスクロマト
	<u>** 1</u>	グラフ分析方
		<u>法</u>
アクリル酸ノルマルーブチル	(略)	(略)
アクリル酸2-ヒドロキシプロ	固体捕集方法	ガスクロマト
ピル	<u>** 1</u>	グラフ分析方
		<u>法</u>
(略)	(略)	(略)

物の種類	試料採取方法	分析方法	
(略)	(略)	(略)	
アクリル酸エチル	(略)	(略)	
(新設)	(新設)	(新設)	
アクリル酸ノルマルーブチル	(略)	(略)	
(新設)	(新設)	(新設)	
(略)	(略)	(略)	

3-アミノ-1H-1, 2, 4	(略)	(略)	$3 - 7 \in J - 1 \text{ H} - 1, 2, 4$	(略)	(略)
ートリアゾール(別名アミト			ートリアゾール(別名アミト		
ロール)			ロール)		
2-アミノ-2-メチル-1-	固体捕集方法	高速液体クロ	(新設)	(新設)	(新設)
プロパノール	<u> </u>	<u>マトグラフ分</u>			
		析方法			
(略)	(略)	(略)	(略)	(略)	(略)
アルファーメチルスチレン	(略)	(略)	アルファーメチルスチレン	(略)	(略)
イソオクタノール	固体捕集方法	ガスクロマト	(新設)	(新設)	(新設)
		グラフ分析方			
		<u>法</u>			
(略)	(略)	(略)	(略)	(略)	(略)
イソプレン	(略)	(略)	イソプレン	(略)	(略)
4, 4'-イソプロピリデンジ	ろ過捕集方法	高速液体クロ	(新設)	(新設)	(新設)
フェノール (別名ビスフェノー		マトグラフ分			
<u>ルA)</u>		析方法			
<u>N-イソプロピルアミノホスホ</u>	ろ過捕集方法	ガスクロマト	(新設)	(新設)	(新設)
ン酸〇-エチル-〇-(3-メ	及び固体捕集	グラフ分析方			
チルー4ーメチルチオフェニ	<u>方法</u>	<u>法</u>			
ル)(別名フェナミホス)※3					
(略)	(略)	(略)	(略)	(略)	(略)
イソプロピルエーテル	(略)	(略)	イソプロピルエーテル	(略)	(略)
<u>N-イソプロピル-N'-フェ</u>	ろ過捕集方法	高速液体クロ	(新設)	(新設)	(新設)
ニルーパラーフェニレンジアミ		マトグラフ分			

<u>></u>		析方法			
(略)	(略)	(略)	(略)	(略)	(略)
一酸化二窒素	(略)	ガスクロマト	一酸化二窒素	(略)	ガスクロマト
		グラフ分析方			グラフ分析方
		法**4			法 ^{※3}
イプシロンーカプロラクタム <u>**3</u>	(略)	(略)	イプシロンーカプロラクタム ^{※4}	(略)	(略)
(略)	(略)	(略)	(略)	(略)	(略)
エチルーパラーニトロフェニル	(略)	(略)	エチルーパラーニトロフェニル	(略)	(略)
チオノベンゼンホスホネイト			チオノベンゼンホスホネイト		
(別名EPN) ^{※<u>3</u>}			(別名EPN) ** <u>4</u>		
<u>O-エチル-S-フェニル=エ</u>	ろ過捕集方法	ガスクロマト	(新設)	(新設)	(新設)
チルホスホノチオロチオナート	及び固体捕集	グラフ分析方			
<u>(</u> 別名ホノホス) ^{※3}	<u>方法</u>	<u>法</u>			
(略)	(略)	(略)	(略)	(略)	(略)
エチレンジアミン	(略)	(略)	エチレンジアミン	(略)	(略)
1-エトキシー2-プロパノー	ろ過捕集方法	ガスクロマト	(新設)	(新設)	(新設)
<u>/\bullet*\}</u>	及び固体捕集	グラフ分析方			
	<u>方法</u>	<u>法</u>			
3-エトキシプロパン酸エチル	固体捕集方法	ガスクロマト	(新設)	(新設)	(新設)
		グラフ分析方			
		<u>法</u>			
(略)	(略)	(略)	(略)	(略)	(略)
エピクロロヒドリン	(略)	(略)	エピクロロヒドリン	(略)	(略)
1, 2-エポキシー3-イソプ	固体捕集方法	ガスクロマト	(新設)	(新設)	(新設)

ロポキシプロパン		グラフ分析方			
		<u>法</u>			
(略)	(略)	(略)	(略)	(略)	(略)
塩化アリル	(略)	(略)	塩化アリル	(略)	(略)
塩化シアン	固体捕集方法	ガスクロマト	(新設)	(新設)	(新設)
	<u> </u>	グラフ分析方			
		<u>法</u>			
(略)	(略)	(略)	(略)	(略)	(略)
1, 2, 4, 5, 6, 7, 8,	(略)	ガスクロマト	1, 2, 4, 5, 6, 7, 8,	(略)	ガスクロマト
8-オクタクロロー2, 3, 3		グラフ分析方	8-オクタクロロ-2, 3, 3		グラフ分析方
a, 4, 7, 7 a ーヘキサヒド		法 ^{※4}	a, 4, 7, 7 a - ヘキサヒド		法 ^{※3}
$\square - 4$, $7 - \cancel{3} \cancel{9} \cancel{1} - 1 \cancel{H} - \cancel{1}$			ロー4, 7ーメタノー1 Hーイ		
ンデン(別名クロルデン)※ <u>3</u>			ンデン(別名クロルデン)** 4		
(略)	(略)	(略)	(略)	(略)	(略)
オルトーアニシジン	(略)	(略)	オルトーアニシジン	(略)	(略)
<u>オルトーセカンダリーブチル</u>	固体捕集方法	ガスクロマト	(新設)	(新設)	(新設)
フェノール		グラフ分析方			
		<u>法</u>			
過酢酸	液体捕集方法	ガスクロマト	(新設)	(新設)	(新設)
	<u> </u>	グラフ分析方			
		<u>法</u>			
(略)	(略)	(略)	(略)	(略)	(略)
カーボンブラック	(略)	(略)	カーボンブラック	(略)	(略)
<u>ぎ酸^{※3}</u>	ろ過捕集方法	イオンクロマ	(新設)	(新設)	(新設)

	及び固体捕集	トグラフ分析			
	<u>方法</u>	<u>方法</u>			
ぎ酸エチル	固体捕集方法	ガスクロマト	(新設)	(新設)	(新設)
		グラフ分析方			
		<u>法</u>			
(略)	(略)	(略)	(略)	(略)	(略)
2-クロロー4-エチルアミノ	(略)	ガスクロマト	2-クロロー4-エチルアミノ	(略)	ガスクロマト
-6-イソプロピルアミノー		グラフ分析方	- 6 -イソプロピルアミノー		グラフ分析方
1,3,5-トリアジン(別名		法**4	1,3,5-トリアジン(別名		法 ^{※3}
アトラジン)			アトラジン)		
(略)	(略)	(略)	(略)	(略)	(略)
クロロピクリン	(略)	(略)	クロロピクリン	(略)	(略)
2 - 7 - 1, 3 - 7 + 7 = 2	固体捕集方法	ガスクロマト	(新設)	(新設)	(新設)
<u>></u>		グラフ分析方			
		<u>法</u>			
酢酸	(略)	(略)	酢酸	(略)	(略)
酢酸1-エトキシ-2-プロピ	固体捕集方法	ガスクロマト	(新設)	(新設)	(新設)
<u>\mathcal{\mu}</u>		グラフ分析方			
		<u>法</u>			
(略)	(略)	(略)	(略)	(略)	(略)
酢酸ブチル(<u>酢酸-セカンダリ</u>	(略)	(略)	酢酸ブチル(酢酸ターシャリー	(略)	(略)
<u>ーブチル及び</u> 酢酸ターシャリー			ブチルに限る。)		
ブチルに限る。)					
酢酸ベンジル	固体捕集方法	ガスクロマト	(新設)	(新設)	(新設)

	<u> </u>	グラフ分析方			
		<u>法</u>			
酢酸1-メトキシ-2-プロピ	固体捕集方法	ガスクロマト	(新設)	(新設)	(新設)
<u>\(\frac{1}{\lambda} \)</u>		グラフ分析方			
		<u>法</u>			
(略)	(略)	(略)	(略)	(略)	(略)
2-シアノアクリル酸メチル	(略)	(略)	2-シアノアクリル酸メチル	(略)	(略)
ジイソブチルケトン	固体捕集方法	ガスクロマト	(新設)	(新設)	(新設)
		グラフ分析方			
		<u>法</u>			
(略)	(略)	(略)	(略)	(略)	(略)
ジエチルーパラーニトロフェニ	(略)	(略)	ジエチルーパラーニトロフェニ	(略)	(略)
ルチオホスフェイト(別名パラ			ルチオホスフェイト(別名パラ		
チオン)			チオン)		
<u>ジエチレングリコール^{※3}</u>	ろ過捕集方法	ガスクロマト	(新設)	(新設)	(新設)
	及び固体捕集	グラフ分析方			
	<u>方法</u>	<u>法</u>			
ジエチレングリコールモノブチ	(略)	(略)	ジエチレングリコールモノブチ	(略)	(略)
ルエーテル <u>*3</u>			ルエーテル ^{※4}		
(略)	(略)	(略)	(略)	(略)	(略)
シクロヘキシルアミン	(略)	(略)	シクロヘキシルアミン	(略)	(略)
<u>シクロヘキセン</u>	固体捕集方法	ガスクロマト	(新設)	(新設)	(新設)
		グラフ分析方			
		<u>法</u>			

(略)	(略)	(略)	(略)	(略)	(略)
ジクロロベンゼン(パラージク	(略)	(略)	ジクロロベンゼン (パラージク	(略)	(略)
ロロベンゼン及びメタージクロ			ロロベンゼンに限る。)		
<u>ロベンゼン</u> に限る。)					
<u>ジシアン</u>	固体捕集方法	ガスクロマト	(新設)	(新設)	(新設)
	<u> </u>	グラフ分析方			
		<u>法</u>			
(略)	(略)	(略)	(略)	(略)	(略)
2, 6-ジーターシャリーブチ	(略)	(略)	2, 6-ジーターシャリーブチ	(略)	(略)
ルー4ークレゾール			ルー4ークレゾール		
ジチオりん酸〇-エチル-〇-	ろ過捕集方法	ガスクロマト	(新設)	(新設)	(新設)
(4-メチルチオフェニル) -	及び固体捕集	グラフ分析方			
S-ノルマループロピル(別名	<u>方法</u>	<u>法</u>			
<u>スルプロホス)^{※3}</u>					
<u>ジチオりん酸O, O-ジエチル</u>	ろ過捕集方法	ガスクロマト	(新設)	(新設)	(新設)
- S - エチルチオメチル(別名	及び固体捕集	グラフ分析方			
<u>ホレート) **3</u>	<u>方法</u>	<u>法</u>			
<u>ジチオりん酸O, O-ジエチル</u>	ろ過捕集方法	ガスクロマト	(新設)	(新設)	(新設)
<u>-S-(ターシャリーブチルチ</u>	及び固体捕集	グラフ分析方			
オメチル)(別名テルブホス)	<u>方法</u>	<u>法</u>			
<u> </u>					
(略)	(略)	(略)	(略)	(略)	(略)
ジフェニルアミン ^{※3}	(略)	(略)	ジフェニルアミン ^{※4}	(略)	(略)
(略)	(略)	(略)	(略)	(略)	(略)

ジメチルアミン	(略)	(略)	ジメチルアミン	(略)	(略)
ジメチルーパラーニトロフェニ	ろ過捕集方法	ガスクロマト	(新設)	(新設)	(新設)
ルチオホスフェイト(別名メチ	及び固体捕集	グラフ分析方			
<u>ルパラチオン)**3</u>	<u>方法</u>	<u>法</u>			
<u>臭化水素</u>	ろ過捕集方法	イオンクロマ	(新設)	(新設)	(新設)
	<u> </u>	<u>トグラフ分析</u>			
		<u>方法</u>			
(略)	(略)	(略)	(略)	(略)	(略)
セレン	(略)	(略)	セレン	(略)	(略)
4-ターシャリーブチルフェ	固体捕集方法	高速液体クロ	(新設)	(新設)	(新設)
<u>ノール</u>		<u>マトグラフ分</u>			
		析方法			
(略)	(略)	(略)	(略)	(略)	(略)
チオりん酸〇, 〇-ジエチルー	(略)	(略)	チオりん酸〇, 〇-ジエチルー	(略)	(略)
O- (2-イソプロピル-6-			O- (2-イソプロピル-6-		
メチルー4ーピリミジニル)			メチルー4ーピリミジニル)		
(別名ダイアジノン)			(別名ダイアジノン)		
チオりん酸O, O-ジエチル-	ろ過捕集方法	ガスクロマト	(新設)	(新設)	(新設)
<u>O-(3,5,6-トリクロロ</u>	及び固体捕集	グラフ分析方			
-2-ピリジル) (別名クロル	<u>方法</u>	<u>法</u>			
<u>ピリホス)**3</u>					
チオりん酸O, O-ジメチルー	ろ過捕集方法	ガスクロマト	(新設)	(新設)	(新設)
O- (2, 4, 5-トリクロロ	及び固体捕集	グラフ分析方			
フェニル)(別名ロンネル)※3	<u>方法</u>	<u>法**4</u>			

(略)	(略)	(略)	(略)	(略)	(略)
テトラクロロジフルオロエタン	(略)	(略)	テトラクロロジフルオロエタン	(略)	(略)
(別名CFC-112)			(別名CFC-112)		
1, 2, 3, 4ーテトラヒドロ	固体捕集方法	ガスクロマト	(新設)	(新設)	(新設)
<u>ナフタレン</u>		グラフ分析方			
		<u> </u>			
(略)	(略)	(略)	(略)	(略)	(略)
1, 1, 1-トリクロロー2,	(略)	ガスクロマト	1, 1, 1-トリクロロ-2,	(略)	ガスクロマト
2-ビス(4-メトキシフェニ		グラフ分析方	2-ビス (4-メトキシフェニ		グラフ分析方
ル) エタン (別名メトキシクロ		法**4	ル) エタン (別名メトキシクロ		法 <u>**3</u>
ル)			ル)		
2, 4, 5-トリクロロフェノ	(略)	(略)	2, 4, 5-トリクロロフェノ	(略)	(略)
キシ酢酸			キシ酢酸		
トリクロロフルオロメタン (別	固体捕集方法	ガスクロマト	(新設)	(新設)	(新設)
<u>名CFC-11)</u>		グラフ分析方			
		<u>法</u>			
1, 2, 3-トリクロロプロパ	(略)	(略)	1, 2, 3-トリクロロプロパ	(略)	(略)
ン**5			ン**5		
1, 2, 4-トリクロロベンゼ	固体捕集方法	ガスクロマト	(新設)	(新設)	(新設)
<u>\(\sum_{\sym_{\sym_{\sym_{\sym_{\sum_{\sym_\}}\cun_\sum_\s\cun_\sum_\s\sym_\sym_\sym_\sym_\sym_\lemt\sym_\sym_\sym_\lemt\sin_\sym_\sym_\</u>		グラフ分析方			
		<u>法^{※4}</u>			
<u>N-(トリクロロメチルチオ)</u>	ろ過捕集方法	高速液体クロ	(新設)	(新設)	(新設)
<u>-1, 2, 3, 6-テトラヒド</u>	及び固体捕集	<u>マトグラフ分</u>			
ロフタルイミド(別名キャプタ	<u>方法</u>	析方法			

<u>\(\nu\)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>					
トリニトロトルエン	(略)	ガスクロマト	トリニトロトルエン	(略)	ガスクロマト
		グラフ分析方			グラフ分析方
		法 [※] 4			法 ^{**3}
(略)	(略)	(略)	(略)	(略)	(略)
トリメチルベンゼン	(略)	(略)	トリメチルベンゼン	(略)	(略)
トルイジン (パラートルイジン	ろ過捕集方法	ガスクロマト	(新設)	(新設)	(新設)
及びメタートルイジンに限	<u> </u>	グラフ分析方			
<u>5.)</u>		<u>法^{※ 4}</u>			
1-ナフチル-N-メチルカル	(略)	(略)	1-ナフチル-N-メチルカル	(略)	(略)
バメート (別名カルバリル) ** <u>3</u>			バメート (別名カルバリル) **4		
ニコチン	固体捕集方法	ガスクロマト	(新設)	(新設)	(新設)
		グラフ分析方			
		<u>法</u>			
(略)	(略)	(略)	(略)	(略)	(略)
ニッケル	(略)	(略)	ニッケル	(略)	(略)
ニトリロ三酢酸	ろ過捕集方法	ガスクロマト	(新設)	(新設)	(新設)
		グラフ分析方			
		<u>法^{※ 4}</u>			
(略)	(略)	(略)	(略)	(略)	(略)
ニトログリセリン	(略)	ガスクロマト	ニトログリセリン	(略)	ガスクロマト
		グラフ分析方			グラフ分析方
		法 ** 4			法**3
ニトロプロパン(1ーニトロプ	(略)	(略)	ニトロプロパン(1ーニトロプ	(略)	(略)

ロパンに限る。)			ロパンに限る。)		
ニトロプロパン(2-ニトロプ	固体捕集方法	ガスクロマト	(新設)	(新設)	(新設)
<u>ロパンに限る。)**5</u>		グラフ分析方			
		<u>法</u>			
(略)	(略)	(略)	(略)	(略)	(略)
ニトロメタン	(略)	(略)	ニトロメタン	(略)	(略)
乳酸ノルマルーブチル	固体捕集方法	ガスクロマト	(新設)	(新設)	(新設)
		グラフ分析方			
		<u>法</u>			
(略)	(略)	(略)	(略)	(略)	(略)
パラーニトロアニリン	(略)	(略)	パラーニトロアニ!	リン (略)	(略)
パラーメトキシフェノール	固体捕集方法	ガスクロマト	(新設)	(新設)	(新設)
		グラフ分析方			
		<u>法</u>			
ビス (2-クロロエチル) エー	固体捕集方法	ガスクロマト	(新設)	(新設)	(新設)
<u>テル</u>		グラフ分析方			
		<u>法</u>			
ビス (ジチオりん酸) S, S'	ろ過捕集方法	ガスクロマト	(新設)	(新設)	(新設)
<u>ーメチレン-O, O, O', O</u>	及び固体捕集	グラフ分析方			
<u>' ーテトラエチル (別名エチオ</u>	<u>方法</u>	<u>法</u>			
<u>×) *3</u>					
(略)	(略)	(略)	(略)	(略)	(略)
ピリジン	(略)	(略)	ピリジン	(略)	(略)
ピレトラム**3	ろ過捕集方法	ガスクロマト	(新設)	(新設)	(新設)

	及び固体捕集	グラフ分析方			
	<u>方法</u>	<u> 法** 4</u>			
(略)	(略)	(略)	(略)	(略)	(略)
フェニレンジアミン (パラー	(略)	(略)	フェニレンジアミン(パラー	(略)	(略)
フェニレンジアミン及びメター			フェニレンジアミン及びメター		
フェニレンジアミンに限る。)			フェニレンジアミンに限る。)		
2-フェノキシエタノール ^{※3}	ろ過捕集方法	ガスクロマト	(新設)	(新設)	(新設)
	及び固体捕集	グラフ分析方			
	<u>方法</u>	<u> </u>			
(略)	(略)	(略)	(略)	(略)	(略)
フタル酸ジエチル ^{※3}	(略)	(略)	フタル酸ジエチル ^{※<u>4</u>}	(略)	(略)
フタル酸ジーノルマルーブチル	(略)	(略)	フタル酸ジーノルマルーブチル	(略)	(略)
フタル酸ジメチル ^{※3}	ろ過捕集方法	ガスクロマト	(新設)	(新設)	(新設)
	及び固体捕集	グラフ分析方			
	<u>方法</u>	<u>法</u>			
フタル酸ノルマルーブチル=ベ	ろ過捕集方法	ガスクロマト	(新設)	(新設)	(新設)
<u>ンジル^{※3}</u>	及び固体捕集	グラフ分析方			
	<u>方法</u>	<u> 法^{※ 4}</u>			
フタル酸ビス (2-エチルヘキ	(略)	(略)	フタル酸ビス (2-エチルヘキ	(略)	(略)
シル)(別名DEHP)			シル)(別名DEHP)		
2, 3-ブタンジオン(別名ジ	固体捕集方法	ガスクロマト	(新設)	(新設)	(新設)
アセチル)		グラフ分析方			
		<u>法</u>			
ブタン(ノルマルーブタンに限	固体捕集方法	ガスクロマト	(新設)	(新設)	(新設)

<u>5。)</u>		グラフ分析方			
		<u>法</u>			
ブチルベンゼン (ノルマルーブ	固体捕集方法	ガスクロマト	(新設)	(新設)	(新設)
チルベンゼンに限る。)		グラフ分析方			
		<u>法</u>			
<u>第</u> 化スルフリル	<u>固体捕集方法</u>	<u>イオンクロマ</u>	(新設)	(新設)	(新設)
		トグラフ分析			
		<u>方法</u>			
弗素及びその水溶性無機化合物	ろ過捕集方法	イオンクロマ	(新設)	(新設)	(新設)
(弗化亜鉛及び弗化カリウムに		トグラフ分析			
<u>限る。)</u>		<u>方法</u>			
(略)	(略)	(略)	(略)	(略)	(略)
フルフリルアルコール	(略)	(略)	フルフリルアルコール	(略)	(略)
プロパン	固体捕集方法	ガスクロマト	(新設)	(新設)	(新設)
		グラフ分析方			
		<u>法</u>			
プロピオンアルデヒド	固体捕集方法	高速液体クロ	(新設)	(新設)	(新設)
	<u> </u>	<u>マトグラフ分</u>			
		析方法			
プロピオン酸	(略)	(略)	プロピオン酸	(略)	(略)
プロピルアルコール (ノルマル	固体捕集方法	ガスクロマト	(新設)	(新設)	(新設)
- プロピルアルコールに限		グラフ分析方			
<u>る。)</u>		<u>法</u>			
プロピレングリコールモノメチ	(略)	(略)	プロピレングリコールモノフ	メチ (略)	(略)

ルエーテル			ルエーテル		
2-プロピン-1-オール	固体捕集方法	ガスクロマト	(新設)	(新設)	(新設)
	<u> </u>	グラフ分析方			
		<u>法^{※ 4}</u>			
ブロモエチレン※5	固体捕集方法	ガスクロマト	(新設)	(新設)	(新設)
		グラフ分析方			
		<u>法</u>			
2-ブロモー2-クロロー1,	固体捕集方法	ガスクロマト	(新設)	(新設)	(新設)
1, 1-トリフルオロエタン		グラフ分析方			
(別名ハロタン)		<u>法</u>			
<u>ブロモクロロメタン</u>	固体捕集方法	ガスクロマト	(新設)	(新設)	(新設)
		グラフ分析方			
		<u>法</u>			
(略)	(略)	(略)	(略)	(略)	(略)
1, 2, 3, 4, 10, 10-	(略)	ガスクロマト	1, 2, 3, 4, 10, 10-	(略)	ガスクロマト
ヘキサクロロー6, 7ーエポキ		グラフ分析方	ヘキサクロロー6, 7ーエポキ		グラフ分析方
$ \dot{y} - 1, 4, 4a, 5, 6,$		法 <u>**</u> 4	$ \dot{y} - 1, 4, 4a, 5, 6,$		法 <u>**</u> 3
7, 8, 8 a - オクタヒドロー			7, 8, 8 a -オクタヒドロー		
エンドー1, 4-エンドー5,			$ $ $\pm \gamma $ $ $ $+ 1$, $4 - \pm \gamma $ $ $ $+ 5$,		
8-ジメタノナフタレン(別名			8-ジメタノナフタレン (別名		
エンドリン)			エンドリン)		
<u>ヘキサクロロシクロペンタジエ</u>	固体捕集方法	ガスクロマト	(新設)	(新設)	(新設)
		グラフ分析方			
		<u>法^{※ 4}</u>			

ヘキサクロロヘキサヒドロメタ	ろ過捕集方法	ガスクロマト	(新設)	(新設)	(新設)
ノベンゾジオキサチエピンオキ	及び固体捕集	グラフ分析方			
サイド (別名ベンゾエピン) **3	<u> 方法</u>	<u>法**4</u>			
ヘキサヒドロー1, 3, 5ート	ろ過捕集方法	高速液体クロ	(新設)	(新設)	(新設)
リニトロー1, 3, 5ートリア		<u>マトグラフ分</u>			
ジン (別名シクロナイト)		析方法			
ヘキサメチレン=ジイソシア	(略)	(略)	ヘキサメチレン=ジイソシア	(略)	(略)
ネート			ネート		
ヘキサン (2-メチルペンタン	固体捕集方法	ガスクロマト	(新設)	(新設)	(新設)
<u>に限る。)</u>		グラフ分析方			
		<u>法</u>			
(略)	(略)	(略)	(略)	(略)	(略)
1, 2, 4-ベンゼントリカル	(略)	(略)	1, 2, 4-ベンゼントリカル	(略)	(略)
ボン酸1,2-無水物			ボン酸1,2一無水物		
ペンタクロロエタン	固体捕集方法	ガスクロマト	(新設)	(新設)	(新設)
		グラフ分析方			
		<u> </u>			
1ーペンタナール	固体捕集方法	ガスクロマト	(新設)	(新設)	(新設)
	<u> </u>	グラフ分析方			
		<u>法</u>			
1ーペンタノール	固体捕集方法	ガスクロマト	(新設)	(新設)	(新設)
		グラフ分析方			
		<u>法</u>			
(略)	(略)	(略)	(略)	(略)	(略)

ほう酸及びそのナトリウム塩	(略)	(略)		ほう酸及びそのナトリウム塩	(略)	(略)
(四ほう酸ナトリウム十水和物				(四ほう酸ナトリウム十水和物		
(別名ホウ砂) に限る。)				(別名ホウ砂) に限る。)		
ホルムアミド	固体捕集方法	ガスクロマト		(新設)	(新設)	(新設)
		グラフ分析方				
		<u>法</u>				
(略)	(略)	(略)	-	(略)	(略)	(略)
N-メチルカルバミン酸2-イ	(略)	(略)		N-メチルカルバミン酸 2-イ	(略)	(略)
ソプロピルオキシフェニル(別				ソプロピルオキシフェニル(別		
名プロポキスル) ^{※3}				名プロポキスル) ^{※<u>4</u>}		
N-メチルカルバミン酸2,3	ろ過捕集方法	高速液体クロ		(新設)	(新設)	(新設)
<u>-ジヒドロー2, 2-ジメチル</u>	及び固体捕集	<u>マトグラフ分</u>				
-7-ベンゾ [b] フラニル	<u>方法</u>	析方法				
_(別名カルボフラン) **3						
メチルーターシャリーブチル	(略)	(略)		メチルーターシャリーブチル	(略)	(略)
エーテル(別名MTBE)				エーテル (別名MTBE)		
メチルナフタレン	固体捕集方法	ガスクロマト		(新設)	(新設)	(新設)
		グラフ分析方				
		<u>法^{※4}</u>				
N-メチル-2-ピロリドン	固体捕集方法	ガスクロマト		(新設)	(新設)	(新設)
		グラフ分析方				
		<u>法</u>				
2-メチル-2-ブタノール	固体捕集方法	ガスクロマト		(新設)	(新設)	(新設)
		グラフ分析方				

		<u>法</u>			
2-メチルブタン-1-オール	固体捕集方法	ガスクロマト	(新設)	(新設)	(新設)
		グラフ分析方			
		<u>法</u>			
(略)	(略)	(略)	(略)	(略)	(略)
2-メチル-2, 4-ペンタン	(略)	(略)	2-メチル-2, 4-ペンタン	(略)	(略)
ジオール			ジオール		
<u>S</u> ーメチルーNー(メチルカル	ろ過捕集方法	高速液体クロ	(新設)	(新設)	(新設)
バモイルオキシ) チオアセチミ	及び固体捕集	<u>マトグラフ分</u>			
デート(別名メソミル)※3	<u>方法</u>	析方法			
4,4'-メチレンジアニリン	(略)	(略)	4, 4'ーメチレンジアニリン	(略)	(略)
<u>1, 1'-メチレンビス(イソ</u>	ろ過捕集方法	高速液体クロ	(新設)	(新設)	(新設)
シアナトベンゼン) (メチレン	<u> </u>	<u>マトグラフ分</u>			
$ \underline{\forall} X(4, 1 - 7 \pm 2 \nu \nu) = \underline{\forall}$		析方法			
イソシアネートに限る。)					
(略)	(略)	(略)	(略)	(略)	(略)
1-(2-メトキシ-2-メチ	(略)	(略)	1-(2-メトキシ-2-メチ	(略)	(略)
ルエトキシ) -2-プロパノー			ルエトキシ) -2-プロパノー		
ル			ル		
$1 - \cancel{\bot} + \cancel{\bot} - 2 - (2 - \cancel{\bot} + \cancel{\bot})$	固体捕集方法	ガスクロマト	(新設)	(新設)	(新設)
キシエトキシ) エタン		グラフ分析方			
		<u>法</u>			
モリブデン及びその化合物 (三	ろ過捕集方法	誘導結合プラ	(新設)	(新設)	(新設)
酸化モリブデン、モリブデン酸		ズマ発光分析			

アンモニウム、モリブデン酸ナ		方法
トリウム及びリンモリブデン酸		
<u>に限る。)</u>		
(略)	(略)	(略)
りん酸	(略)	(略)
りん酸ジメチル= (E) -1-	ろ過捕集方法	ガスクロマト
(N-メチルカルバモイル) <u>-</u>	及び固体捕集	グラフ分析方
1-プロペン-2-イル (別名	<u>方法</u>	<u>法</u>
モノクロトホス) **3		
(略)	(略)	(略)
りん酸トリーノルマルーブチル	(略)	(略)
<u>*3</u>		
(略)	(略)	(略)
六塩化ブタジエン	(略)	ガスクロマト
		グラフ分析方
		法 <u>**</u> 4
ロテノン	ろ過捕集方法	高速液体クロ
		マトグラフ分
		析方法

r	#:	
1)	囲	考

- 1 ※1の付されている物質の試料採取方法については、捕集剤<u>又</u> <u>は捕集液</u>との化学反応により測定しようとする物質を採取する方 法であること。
- 2 (略)

(略)	(略)
(略)	(略)
(新設)	(新設)
(略)	(略)
(略)	(略)
(略)	(略)
(略)	ガスクロマト
	グラフ分析方
	法 <u>**3</u>
(新設)	(新設)
	(新設) (略) (略) (略)

備考

- 1 ※1の付されている物質の試料採取方法については、捕集剤との化学反応により測定しようとする物質を採取する方法であること。
- 2 (略)

- 3 ※3が付されている物質については、蒸気と粒子の両方を捕集 すべき物質であり、当該物質の試料採取方法におけるろ過捕集方 法は粒子を捕集するための方法、固体捕集方法は蒸気を捕集する ための方法に該当するものであること。
- 4 <u>※4の付されている物質の分析方法に用いられる機器は、電子</u> <u>捕獲型検出器(ECD)又は質量分析器を有するガスクロマトグ</u> ラフであること。

 $5 \sim 7$ (略)

別表 2 物の種類別濃度基準値一覧(発がん性が明確であるため、 長期的な健康影響が生じない安全な閾値として濃度基準値を設定で きない物質を含む。)

thn の種類	八時間	短時間
物の種類	濃度基準値	濃度基準値
(略)	(略)	(略)
アクリル酸エチル	(略)	(略)
アクリル酸2-エチルヘキシル	<u>2 ppm</u>	
アクリル酸ノルマルーブチル	(略)	(略)
アクリル酸2-ヒドロキシプロ	0.5 ppm	_
ピル		
(略)	(略)	(略)
$3 - 7 \le J - 1 H - 1, 2, 4$	(略)	(略)
- トリアゾール (別名アミト		

- 3 <u>※3の付されている物質の分析方法に用いられる機器は、電子</u> 捕獲型検出器 (ECD) 又は質量分析器を有するガスクロマトグ ラフであること。
- 4 ※4が付されている物質については、蒸気と粒子の両方を捕集 すべき物質であり、当該物質の試料採取方法におけるろ過捕集方 法は粒子を捕集するための方法、固体捕集方法は蒸気を捕集する ための方法に該当するものであること。

 $5 \sim 7$ (略)

別表 2 物の種類別濃度基準値一覧(発がん性が明確であるため、 長期的な健康影響が生じない安全な閾値として濃度基準値を設定で きない物質を含む。)

thn の 毛籽	八時間	短時間
物の種類	濃度基準値	濃度基準値
(略)	(略)	(略)
アクリル酸エチル	(略)	(略)
(新設)	(新設)	(新設)
アクリル酸ノルマルーブチル	(略)	(略)
(新設)	(新設)	(新設)
(略)	(略)	(略)
3-アミノ-1H-1, 2, 4	(略)	(略)
- トリアゾール(別名アミト		

ロール)			ロール)		
2-アミノ-2-メチル-1-	<u>1 ppm</u>	=	(新設)	(新設)	(新設)
プロパノール					
(略)	(略)	(略)	(略)	(略)	(略)
アルファーメチルスチレン	(略)	(略)	アルファーメチルスチレン	(略)	(略)
<u>イソオクタノール</u>	<u>50 ppm</u>	=	(新設)	(新設)	(新設)
(略)	(略)	(略)	(略)	(略)	(略)
イソプレン	(略)	(略)	イソプレン	(略)	(略)
4, 4'-イソプロピリデンジ	2 mg/m^3	=	(新設)	(新設)	(新設)
フェノール(別名ビスフェノー					
<u>ルA)</u>					
<u>N-イソプロピルアミノホスホ</u>	0.05 mg/m^3	<u> </u>	(新設)	(新設)	(新設)
ン酸〇-エチル-〇-(3-メ					
<u>チルー4-メチルチオフェニ</u>					
ル) (別名フェナミホス)					
(略)	(略)	(略)	(略)	(略)	(略)
イソプロピルエーテル	(略)	(略)	イソプロピルエーテル	(略)	(略)
<u>N-イソプロピル-N'-フェ</u>	10 mg/m^3	_	(新設)	(新設)	(新設)
ニルーパラーフェニレンジアミ					
<u>×</u>					
(略)	(略)	(略)	(略)	(略)	(略)
エチルーパラーニトロフェニル	(略)	(略)	エチルーパラーニトロフェニル	(略)	(略)
チオノベンゼンホスホネイト			チオノベンゼンホスホネイト		
(別名EPN)			(別名EPN)		

<u>O-エチル-S-フェニル=エ</u>	0.1 mg/m^3	_	(新設)	(新設)	(新設)
<u>チルホスホノチオロチオナート</u>					
(別名ホノホス)					
(略)	(略)	(略)	(略)	(略)	(略)
エチレンジアミン	(略)	(略)	エチレンジアミン	(略)	(略)
1-エトキシー2-プロパノー	60 ppm	_	(新設)	(新設)	(新設)
<u>/\lambda</u>					
3-エトキシプロパン酸エチル	100 ppm	_	(新設)	(新設)	(新設)
エピクロロヒドリン	(略)	(略)	エピクロロヒドリン	(略)	(略)
1, 2-エポキシー3-イソプ	<u>1 ppm</u>	_	(新設)	(新設)	(新設)
ロポキシプロパン					
(略)	(略)	(略)	(略)	(略)	(略)
塩化アリル	(略)	(略)	塩化アリル	(略)	(略)
塩化シアン	_	<u>0.3 ppm</u>	(新設)	(新設)	(新設)
(略)	(略)	(略)	(略)	(略)	(略)
オルトーアニシジン	(略)	(略)	オルトーアニシジン	(略)	(略)
オルトーセカンダリーブチル	20 mg/m^3	_	(新設)	(新設)	(新設)
フェノール					
過酢酸	_	0.5 ppm	(新設)	(新設)	(新設)
(略)	(略)	(略)	(略)	(略)	(略)
カーボンブラック	(略)	(略)	カーボンブラック	(略)	(略)
<u>ぎ酸</u>	<u>5 ppm</u>	_	(新設)	(新設)	(新設)
ぎ酸エチル	_	100 ppm	(新設)	(新設)	(新設)
(略)	(略)	(略)	(略)	(略)	(略)

クロロピクリン	(略)	(略)	クロロピクリン	(略)	(略)
2-クロロー1, 3-ブタジエ	1 ppm	_	(新設)	(新設)	(新設)
<u>\\</u>					
酢酸	(略)	(略)	酢酸	(略)	(略)
酢酸1-エトキシ-2-プロピ	<u>20 ppm</u>	<u> </u>	(新設)	(新設)	(新設)
<u>/\bar{\bar{\bar{\bar{\bar{\bar{\bar{</u>					
(略)	(略)	(略)	(略)	(略)	(略)
酢酸ブチル(酢酸ーセカンダリ	(略)	(略)	酢酸ブチル(酢酸ターシャリー	(略)	(略)
<u>ーブチル及び</u> 酢酸ターシャリー			ブチルに限る。)		
ブチルに限る。)					
酢酸ベンジル	<u>10 ppm</u>	<u> </u>	(新設)	(新設)	(新設)
酢酸1ーメトキシー2ープロピ	50 ppm	<u> </u>	(新設)	(新設)	(新設)
<u>/\tilde{\bullet}</u>					
(略)	(略)	(略)	(略)	(略)	(略)
2-シアノアクリル酸メチル	(略)	(略)	2-シアノアクリル酸メチル	(略)	(略)
ジイソブチルケトン	<u>15 ppm</u>	<u> </u>	(新設)	(新設)	(新設)
(略)	(略)	(略)	(略)	(略)	(略)
ジエチルーパラーニトロフェニ	(略)	(略)	ジエチルーパラーニトロフェニ	(略)	(略)
ルチオホスフェイト(別名パラ			ルチオホスフェイト(別名パラ		
チオン)			チオン)		
ジエチレングリコール	<u>10 ppm</u>	_	(新設)	(新設)	(新設)
(略)	(略)	(略)	(略)	(略)	(略)
シクロヘキシルアミン	(略)	(略)	シクロヘキシルアミン	(略)	(略)
シクロヘキセン	20 ppm	_	(新設)	(新設)	(新設)

(略)	(略)	(略)	(略)	(略)	(略)
ジクロロベンゼン (パラージク	(略)	(略)	ジクロロベンゼン(パラージク	(略)	(略)
ロロベンゼンに限る。)			ロロベンゼンに限る。)		
ジクロロベンゼン (メタージク	2 ppm		(新設)	(新設)	(新設)
ロロベンゼンに限る。)					
<u>ジシアン</u>	<u>5 ppm</u>	_	(新設)	(新設)	(新設)
(略)	(略)	(略)	(略)	(略)	(略)
2,6-ジーターシャリーブチ	(略)	(略)	2,6-ジーターシャリーブチ	(略)	(略)
ルー4ークレゾール			ルー4ークレゾール		
ジチオりん酸〇-エチル-〇-	0.1 mg/m^3	_	(新設)	(新設)	(新設)
(4-メチルチオフェニル) -					
S-ノルマループロピル(別名					
スルプロホス)					
ジチオりん酸〇, 〇-ジエチル	0.05 mg/m^3		(新設)	(新設)	(新設)
- S - エチルチオメチル (別名					
ホレート)_					
ジチオりん酸〇, 〇-ジエチル	0.01 mg/m^3		(新設)	(新設)	(新設)
<u>-S-(ターシャリーブチルチ</u>					
オメチル) (別名テルブホス)					
(略)	(略)	(略)	(略)	(略)	(略)
ジメチルアミン	(略)	(略)	ジメチルアミン	(略)	(略)
ジメチルーパラーニトロフェニ	0.02 mg/m^3	=	(新設)	(新設)	(新設)
ルチオホスフェイト(別名メチ					
ルパラチオン)					

臭化水素	=	<u>1 ppm</u>	(新設)	(新設)	(新設)
(略)	(略)	(略)	(略)	(略)	(略)
セレン	(略)	(略)	セレン	(略)	(略)
4-ターシャリーブチルフェ	0.5 mg/m^3	=	(新設)	(新設)	(新設)
<u>ノール</u>					
(略)	(略)	(略)	(略)	(略)	(略)
チオりん酸O, O-ジエチル-	(略)	(略)	チオりん酸O, O-ジエチル-	(略)	(略)
O- (2-イソプロピル-6-			O- (2-イソプロピル-6-		
メチルー4ーピリミジニル)			メチルー4ーピリミジニル)		
(別名ダイアジノン)			(別名ダイアジノン)		
<u>チオりん酸O, Oージエチルー</u>	0.05 mg/m^3		(新設)	(新設)	(新設)
<u>O-(3,5,6-トリクロロ</u>					
_ 2 - ピリジル)(別名クロル					
ピリホス)_					
<u>チオりん酸O, Oージメチルー</u>	5 mg/m^3		(新設)	(新設)	(新設)
<u>O-(2,4,5-トリクロロ</u>					
フェニル) (別名ロンネル)					
(略)	(略)	(略)	(略)	(略)	(略)
テトラクロロジフルオロエタン	(略)	(略)	テトラクロロジフルオロエタン	(略)	(略)
(別名CFC-112)			(別名CFC-112)		
1, 2, 3, 4-テトラヒドロ	<u>2 ppm</u>	=	(新設)	(新設)	(新設)
<u>ナフタレン</u>					
(略)	(略)	(略)	(略)	(略)	(略)
2, 4, 5-トリクロロフェノ	(略)	(略)	2, 4, 5-トリクロロフェノ	(略)	(略)

キシ酢酸			キシ酢酸		
トリクロロフルオロメタン(別	_	1,000 ppm	(新設)	(新設)	(新設)
<u>名CFC-11)</u>					
1, 2, 3-トリクロロプロパ	(略)	(略)	1, 2, 3-トリクロロプロパ	(略)	(略)
\big \sigma^{\cdot 2}			ン**2		
1, 2, 4-トリクロロベンゼ	0.5 ppm		(新設)	(新設)	(新設)
<u>\(\sum_{\text{\subset}} \) \(\text{\subset} \)</u>					
<u>N-(トリクロロメチルチオ)</u>	5 mg/m^3		(新設)	(新設)	(新設)
<u>-1, 2, 3, 6-テトラヒド</u>					
ロフタルイミド(別名キャプタ					
<u>ン)</u>					
(略)	(略)	(略)	(略)	(略)	(略)
トリメチルベンゼン	(略)	(略)	トリメチルベンゼン	(略)	(略)
トルイジン (パラートルイジン	4 mg/m^3		(新設)	(新設)	(新設)
及びメタートルイジンに限					
<u>る。)</u>					
1-ナフチル-N-メチルカル	(略)	(略)	1-ナフチル-N-メチルカル	(略)	(略)
バメート (別名カルバリル)			バメート (別名カルバリル)		
ニコチン	0.5 mg/m^3	_	(新設)	(新設)	(新設)
(略)	(略)	(略)	(略)	(略)	(略)
ニッケル	(略)	(略)	ニッケル	(略)	(略)
ニトリロ三酢酸	3 mg/m^3	_	(新設)	(新設)	(新設)
(略)	(略)	(略)	(略)	(略)	(略)
ニトロプロパン(1ーニトロプ	(略)	(略)	ニトロプロパン(1ーニトロプ	(略)	(略)

ロパンに限る。)			ロパンに限る。)		
ニトロプロパン(2-ニトロプ	_	=	(新設)	(新設)	(新設)
<u>ロパンに限る。)**2</u>					
(略)	(略)	(略)	(略)	(略)	(略)
ニトロメタン	(略)	(略)	ニトロメタン	(略)	(略)
乳酸ノルマルーブチル	10 mg/m^3		(新設)	(新設)	(新設)
(略)	(略)	(略)	(略)	(略)	(略)
パラーニトロアニリン	(略)	(略)	パラーニトロアニリン	(略)	(略)
パラーメトキシフェノール	<u>10 mg/m³</u>	_	(新設)	(新設)	(新設)
ビス (2-クロロエチル) エー	0.5 ppm	<u> </u>	(新設)	(新設)	(新設)
<u>テル</u>					
<u>ビス(ジチオりん酸)S,S'</u>	0.05 mg/m^3	<u> </u>	(新設)	(新設)	(新設)
<u>ーメチレン-0,0,0',0</u>					
' -テトラエチル (別名エチオ					
<u>\(\nu\)</u>					
(略)	(略)	(略)	(略)	(略)	(略)
ピリジン	(略)	(略)	ピリジン	(略)	(略)
ピレトラム	2 mg/m^3	_	(新設)	(新設)	(新設)
(略)	(略)	(略)	(略)	(略)	(略)
フェニレンジアミン (パラー	(略)	(略)	フェニレンジアミン (パラー	(略)	(略)
フェニレンジアミン及びメター			フェニレンジアミン及びメター		
フェニレンジアミンに限る。)			フェニレンジアミンに限る。)		
2-フェノキシエタノール	1 mg/m^3	_	(新設)	(新設)	(新設)
(略)	(略)	(略)	(略)	(略)	(略)

フタル酸ジーノルマルーブチル	(略)	(略)	フタル酸ジーノルマルーブチル	(略)	(略)
フタル酸ジメチル	5 mg/m^3	_	(新設)	(新設)	(新設)
フタル酸ノルマルーブチル=ベ	<u>20 mg/m³</u>	_	(新設)	(新設)	(新設)
ンジル					
フタル酸ビス (2-エチルヘキ	(略)	(略)	フタル酸ビス(2-エチルヘキ	(略)	(略)
シル)(別名DEHP)			シル)(別名DEHP)		
2, 3-ブタンジオン(別名ジ	0.01 ppm	_	(新設)	(新設)	(新設)
アセチル)					
ブタン (ノルマルーブタンに限	500 ppm	_	(新設)	(新設)	(新設)
<u>る。)</u>					
ブチルベンゼン (ノルマルーブ	<u>10 ppm</u>	<u> </u>	(新設)	(新設)	(新設)
チルベンゼンに限る。)					
<u> </u>	<u>1 ppm</u>	<u> </u>	(新設)	(新設)	(新設)
弗素及びその水溶性無機化合物	弗素として	<u> </u>	(新設)	(新設)	(新設)
(弗化亜鉛及び弗化カリウムに	2.5 mg/m^3				
限る。)_					
(略)	(略)	(略)	(略)	(略)	(略)
フルフリルアルコール	(略)	(略)	フルフリルアルコール	(略)	(略)
プロパン	1,000 ppm	<u> </u>	(新設)	(新設)	(新設)
プロピオンアルデヒド	<u>20 ppm</u>	_	(新設)	(新設)	(新設)
プロピオン酸	(略)	(略)	プロピオン酸	(略)	(略)
プロピルアルコール (ノルマル	300 ppm	_	(新設)	(新設)	(新設)
-プロピルアルコールに限					
<u>る。)</u>					

プロピレングリコールモノメチ	(略)	(略)	プロピレングリコールモノメチ	(略)	(略)
ルエーテル			ルエーテル		
2-プロピン-1-オール	<u>1 ppm</u>	<u> </u>	(新設)	(新設)	(新設)
ブロモエチレン ^{※2}	_	_	(新設)	(新設)	(新設)
2-ブロモー2-クロロー1,	0.1 ppm	_	(新設)	(新設)	(新設)
1, 1-トリフルオロエタン					
(別名ハロタン)					
ブロモクロロメタン	100 ppm	_	(新設)	(新設)	(新設)
(略)	(略)	(略)	(略)	(略)	(略)
1, 2, 3, 4, 10, 10-	(略)	(略)	1, 2, 3, 4, 10, 10-	(略)	(略)
ヘキサクロロー6, 7ーエポキ			ヘキサクロロー6, 7ーエポキ		
$\triangleright -1$, 4, 4 a, 5, 6,					
7, 8, 8 a ーオクタヒドロー			7, 8, 8 a -オクタヒドロー		
エンドー1, 4-エンドー5,			エンドー1, 4-エンドー5,		
8-ジメタノナフタレン (別名			8-ジメタノナフタレン(別名		
エンドリン)			エンドリン)		
<u>ヘキサクロロシクロペンタジエ</u>	0.005 ppm	_	(新設)	(新設)	(新設)
<u>\(\sum_{\text{\subset}} \) \(\text{\subset} \)</u>					
ヘキサクロロヘキサヒドロメタ	0.1 mg/m^3	_	(新設)	(新設)	(新設)
<u>ノベンゾジオキサチエピンオキ</u>					
サイド (別名ベンゾエピン)					
ヘキサヒドロー1, 3, 5ート	0.5 mg/m^3	_	(新設)	(新設)	(新設)
<u>リニトロー1, 3, 5ートリア</u>					
ジン (別名シクロナイト)					

ヘキサメチレン=ジイソシア	(略)	(略)	ヘキサメチレン=ジイソシア	(略)	(略)
ネート			ネート		
ヘキサン (2-メチルペンタン	200 ppm		(新設)	(新設)	(新設)
<u>に限る。)</u>					
(略)	(略)	(略)	(略)	(略)	(略)
1, 2, 4-ベンゼントリカル	(略)	(略)	1, 2, 4-ベンゼントリカル	(略)	(略)
ボン酸1,2一無水物			ボン酸1,2一無水物		
ペンタクロロエタン	<u>2 ppm</u>	_	(新設)	(新設)	(新設)
1-ペンタナール	30 ppm	_	(新設)	(新設)	(新設)
1-ペンタノール	100 ppm	_	(新設)	(新設)	(新設)
(略)	(略)	(略)	(略)	(略)	(略)
ほう酸及びそのナトリウム塩	(略)	(略)	ほう酸及びそのナトリウム塩	(略)	(略)
(四ほう酸ナトリウム十水和物			(四ほう酸ナトリウム十水和物		
(別名ホウ砂)に限る。)			(別名ホウ砂) に限る。)		
<u>ホルムアミド</u>	<u>5 ppm</u>	<u> </u>	(新設)	(新設)	(新設)
(略)	(略)	(略)	(略)	(略)	(略)
N-メチルカルバミン酸2-イ	(略)	(略)	N-メチルカルバミン酸2-イ	(略)	(略)
ソプロピルオキシフェニル(別			ソプロピルオキシフェニル(別		
名プロポキスル)			名プロポキスル)		
N-メチルカルバミン酸2,3	0.05 mg/m^3		(新設)	(新設)	(新設)
<u>ージヒドロー2, 2ージメチル</u>					
_ 7 - ベンゾ [b] フラニル					
(別名カルボフラン)					
メチルーターシャリーブチル	(略)	(略)	メチルーターシャリーブチル	(略)	(略)

エーテル(別名MTBE)			エーテル (別名MTBE)		
メチルナフタレン	0.3 mg/m^3	_	(新設)	(新設)	(新設)
N-メチル-2-ピロリドン	<u>1 ppm</u>	_	(新設)	(新設)	(新設)
2-メチル-2-ブタノール	10 ppm	_	(新設)	(新設)	(新設)
2-メチルブタン-1-オール	10 ppm	_	(新設)	(新設)	(新設)
(略)	(略)	(略)	(略)	(略)	(略)
2-メチル-2, 4-ペンタン	(略)	(略)	2-メチル-2, 4-ペンタン	(略)	(略)
ジオール			ジオール		
<u>S</u> ーメチルーNー(メチルカル	0.05 mg/m^3	_	(新設)	(新設)	(新設)
バモイルオキシ) チオアセチミ					
デート (別名メソミル)					
4,4'-メチレンジアニリン	(略)	(略)	4,4'ーメチレンジアニリン	(略)	(略)
<u>1, 1'-メチレンビス(イソ</u>	0.05 mg/m^3	_	(新設)	(新設)	(新設)
シアナトベンゼン) (メチレン					
$\underline{\forall}$ $Z(4, 1-7$					
イソシアネートに限る。)					
(略)	(略)	(略)	(略)	(略)	(略)
1-(2-メトキシ-2-メチ	(略)	(略)	1-(2-メトキシ-2-メチ	(略)	(略)
ルエトキシ) -2-プロパノー			ルエトキシ) -2-プロパノー		
ル			ル		
1-メトキシ-2-(2-メト	1 ppm	_	(新設)	(新設)	(新設)
キシエトキシ) エタン					
モリブデン及びその化合物(三	モリブデンと	_	(新設)	(新設)	(新設)
酸化モリブデン、モリブデン酸	して 0.5 mg/				

アンモニウム、モリブデン酸ナ	<u>m</u> ³				
トリウム及びリンモリブデン酸					
<u>に限る。)</u>					
(略)	(略)	(略)	(略)	(略)	(略)
りん酸	(略)	(略)	りん酸	(略)	(略)
りん酸ジメチル= (E) -1-	0.05 mg/m^3	<u> </u>	(新設)	(新設)	(新設)
<u>(N-メチルカルバモイル) -</u>					
1-プロペン-2-イル (別名					
モノクロトホス)_					
(略)	(略)	(略)	(略)	(略)	(略)
(略)	(略)	(略)	(略)	(略)	(略)
六塩化ブタジエン	(略)	(略)	六塩化ブタジエン	(略)	(略)
ロテノン	0.3 mg/m^3	=	(新設)	(新設)	(新設)
備考 (略)			備考(略)		
別表 3-1~別表 3-5 (略)			別表 3-1~別表 3-5 (略)		

(参考1)・(参考2)

(略)

(参考1)・(参考2)

(略)